OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 11 — Nov. 26, 2007

Volumetric motility-contrast imaging of tissue response to cytoskeletal anti-cancer drugs

Kwan Jeong, John J. Turek, and David D. Nolte  »View Author Affiliations


Optics Express, Vol. 15, Issue 21, pp. 14057-14064 (2007)
http://dx.doi.org/10.1364/OE.15.014057


View Full Text Article

Enhanced HTML    Acrobat PDF (3221 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Microscopic imaging of cellular motility has recently advanced from two dimensions to three dimensions for applications in drug development. However, significant degradation in resolution occurs with increasing imaging depth, limiting access to motility information from deep inside the sample. Here, digital holographic optical coherence imaging is adapted to allow visualization of motility in tissue at depths inaccessible to conventional motility assay approaches. This method tracks the effect of cytoskeletal anti-cancer drugs on tissue inside its natural three-dimensional environment using time-course measurement of motility within tumor tissue.

© 2007 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(110.6150) Imaging systems : Speckle imaging
(170.1650) Medical optics and biotechnology : Coherence imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: July 25, 2007
Revised Manuscript: September 20, 2007
Manuscript Accepted: September 24, 2007
Published: October 11, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Kwan Jeong, John J. Turek, and David D. Nolte, "Volumetric motility-contrast imaging of tissue response to cytoskeletal anti-cancer drugs," Opt. Express 15, 14057-14064 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-21-14057


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. D. Vale, "The molecular motor toolbox for intracellular transport," Cell 112, 467-480 (2003),. [CrossRef] [PubMed]
  2. R. D. Vale and R. A. Milligan, "The way things move: Looking under the hood of molecular motor proteins," Science 288, 88-95 (2000). [CrossRef]
  3. E. Karsenti and I. Vernos, "The mitotic spindle: A self-made machine," Science 294, 543-547 (2001). [CrossRef] [PubMed]
  4. N. Hirokawa, "Kinesin and dynein superfamily proteins and the mechanism of organelle transport," Science 279, 519-526 (1998). [CrossRef] [PubMed]
  5. A. Desai and T. J. Mitchison, "Microtubule polymerization dynamics," Annu. Rev. Cell Dev. Biol. 13. 83-117 (1997). [CrossRef] [PubMed]
  6. J. R. Peterson and T. J. Mitchison, "Small molecules, big impact: A history of chemical inhibitors and the cytoskeleton," Chem. Biol. 9, 1275-1285 (2002). [CrossRef] [PubMed]
  7. M. A. Jordan and L. Wilson, "Microtubules and actin filaments: dynamic targets for cancer chemotherapy," Curr. Opin. Cell Biol. 10, 123-130 (1998). [CrossRef] [PubMed]
  8. T. D. Pollard and G. G. Borisy, "Cellular motility driven by assembly and disassembly of actin filaments," Cell 112, 453-465 (2003). [CrossRef] [PubMed]
  9. E. Cukierman, R. Pankov, D. R. Stevens, and K. M. Yamada, "Taking cell-matrix adhesions to the third dimension," Science 294, 1708-1712 (2001). [CrossRef] [PubMed]
  10. D. J. Webb and A. F. Horwitz, "New dimensions in cell migration," Nat. Cell Biol. 5, 690-692 (2003). [CrossRef] [PubMed]
  11. W. E. Moerner and D. P. Fromm, "Methods of single-molecule fluorescence spectroscopy and microscopy," Rev. Sci. Instrum. 74, 3597-3619 (2003). [CrossRef]
  12. R. H. Webb, "Confocal optical microscopy," Rep. Prog. Phys. 59, 427-471 (1996). [CrossRef]
  13. M. D. Cahalan, I. Parker, S. H. Wei, and M. J. Miller, "Two-photon tissue imaging: Seeing the immune system in a fresh light," Nat. Rev. Immunol. 2, 872-880 (2002). [CrossRef] [PubMed]
  14. K. Konig, "Multiphoton microscopy in life sciences," J. Microsc. 200, 83-104 (2000). [CrossRef] [PubMed]
  15. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, "Optical projection tomography as a tool for 3D microscopy and gene expression studies," Science 296, 541-545 (2002). [CrossRef] [PubMed]
  16. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, "Optical sectioning deep inside live embryos by selective plane illumination microscopy," Science 305, 1007-1009 (2004). [CrossRef] [PubMed]
  17. M. G. L. Gustafsson, "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," Proc. Natl. Acad. Sci. USA 102, 13081-13086 (2005). [CrossRef] [PubMed]
  18. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Natl. Acad. Sci. USA 97, 8206-8210 (2000). [CrossRef] [PubMed]
  19. T. -C. Poon, T. Yatagai, and W. Jüptner, "Digital holography - coherent optics of the 21st century: introduction," Appl. Opt. 45, 821-821 (2006). [CrossRef]
  20. U. Schnars and W. P. O Jüptner, "Direct recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002). [CrossRef]
  21. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, "Time-domain optical coherence tomography with digital holographic microscopy," Appl. Opt. 44, 1806-1812 (2005). [CrossRef] [PubMed]
  22. K. Jeong, J. J. Turek, and D. D. Nolte, "Fourier-domain digital holographic optical coherence imaging of living tissue," Appl. Opt. 46, 4999-5008 (2007) [CrossRef] [PubMed]
  23. J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003). [CrossRef] [PubMed]
  24. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  25. P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. French, and D. D. Nolte, "Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids," Appl. Opt. 43, 4862-4873 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited