OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 11 — Nov. 26, 2007

Quantum interference fringes beating the diffraction limit

Yoshio Kawabe, Hideki Fujiwara, Ryo Okamoto, Keiji Sasaki, and Shigeki Takeuchi  »View Author Affiliations


Optics Express, Vol. 15, Issue 21, pp. 14244-14250 (2007)
http://dx.doi.org/10.1364/OE.15.014244


View Full Text Article

Enhanced HTML    Acrobat PDF (560 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spatially formed two-photon interference fringes with fringe periods smaller than the diffraction limit are demonstrated. In the experiment, a fringe formed by two-photon NOON states with wavelength λ=702.2 nm is observed using a specially developed near-field scanning optical microscope probe and two-photon detection setup. The observed fringe period of 328.2 nm is well below the diffraction limit (351 nm = λ/2). Another experiment with a path-length difference larger than the coherent length of photons confirms that the observed fringe is due to two-photon interference.

© 2007 Optical Society of America

OCIS Codes
(270.5290) Quantum optics : Photon statistics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: August 23, 2007
Revised Manuscript: October 11, 2007
Manuscript Accepted: October 11, 2007
Published: October 12, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Yoshio Kawabe, Hideki Fujiwara, Ryo Okamoto, Keiji Sasaki, and Shigeki Takeuchi, "Quantum interference fringes beating the diffraction limit," Opt. Express 15, 14244-14250 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-21-14244


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Rayleigh, "Investigations in optics, with special reference to the spectroscope," Phil. Mag. 8, 261-274 (1879).
  2. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, "Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733-2736 (2000). [CrossRef] [PubMed]
  3. P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, "Quantum-interferometric optical lithography: towards arbitrary two-dimensional patterns," Phys Rev. A 63, 063407 (2001). [CrossRef]
  4. G. Bjork and L. L. Sánchez-Soto, "Entangled-state Lithography: Tailoring any pattern with a single state," Phys. Rev. Lett. 86, 4516-4519 (2001). [CrossRef] [PubMed]
  5. E. J. S. Fonseca, C. H. Monken, and S. Páuda, "Measurement of the de Broglie wavelength of a multiphoton wave packet," Phys. Rev. Lett. 82, 2868-2871 (1999). [CrossRef]
  6. M. D’Angelo, M. V. Chekhova, and Y. Shih, "Two-photon diffraction and quantum lithography," Phys. Rev. Lett. 87, 013602 (2001). [CrossRef]
  7. T. B. Pittman, Y. H. Shih, A. V. Sergienko, and M. H. Rubin, "Experimental tests of Bell’s inequalities based on space-time and spin variables," Phys. Rev. A 51, 3495 - 3498 (1995). [CrossRef] [PubMed]
  8. T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, "Beating the standard quantum limit with four entangled photons," Science 316, 726-729 (2007). [CrossRef] [PubMed]
  9. K. Edamatsu, R. Shimizu, and T. Itoh, "Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion," Phys. Rev. Lett. 89, 213601 (2002). [CrossRef] [PubMed]
  10. Y. H. Kim, S. P. Kulik, and Y. Shih, "High-intensity pulsed source of space-time and polarization double-entangled photon pairs," Phys. Rev. A 62, 011802 (2000). [CrossRef]
  11. J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, "Demonstration of an all-optical quantum controlled-NOT gate," Nature 426, 264-267 (2003). [CrossRef] [PubMed]
  12. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffraction barrier: optical microscopy of a nanometric scale," Science 251, 1468-1470 (1991). [CrossRef] [PubMed]
  13. Y. H. Zhai, X.-H. Chen, D. Zhang, L.-A. Wu, "Two-photon interference with true thermal light," Phys. Rev. A 72, 043805 (2005). [CrossRef]
  14. J. Xiong, D. Z. Cao, F. Huang, H. G. Li, X. J. Sun, and K. Wang, "Experimental observation of classical subwavelength interference with a pseudothermal light source," Phys. Rev. Lett. 94, 173601 (2005). [CrossRef] [PubMed]
  15. C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044~2046 (1987). [CrossRef] [PubMed]
  16. C. C. Gerry and R. A. Campos, "Generation of maximally entangled photonic states with a quantum-optical Fredkin gate," Phys. Rev. A 64, 063814 (2001). [CrossRef]
  17. K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, "Generation of ultraviolet entangled photons in a semiconductor," Nature 431, 167-170 (2004). [CrossRef] [PubMed]
  18. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006). [CrossRef] [PubMed]
  19. K.-S. Lee, D.-Y. Yang, S. H. Park, and R. H. Kim, "Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications," Polym. Adv. Technol. 17, 72-82 (2006). [CrossRef]
  20. P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, "De Broglie wavelength of a non-local four-photon state," Nature 429, 158-161 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited