OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 11 — Nov. 26, 2007

Facile fabrication of close-packed microlens arrays using photoinduced surface relief structures as templates

Seungwoo Lee, Yong-Cheol Jeong, and Jung-Ki Park  »View Author Affiliations

Optics Express, Vol. 15, Issue 22, pp. 14550-14559 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (2211 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the cost-effective and facile method of fabricating close-packed microlens arrays using photoinduced two-dimensional (2-D) surface relief structures as original templates. 2-D surface relief structures are produced by successive inscription of two beams interference patterns with different grating vectors on azopolymer films. The employed exposure dose of 1st inscription stage and 2nd inscription stage are optimized to obtain symmetrical modulation heights. These photoinduced 2-D surface relief structures on azopolymer films are used directly to mold PDMS, and PDMS molds were then transferred onto photopolymer to imprint microlens arrays. Using this method, tetragonally and hexagonally close-packed microlens arrays are successfully fabricated in rapid and cost-effective way.

© 2007 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Optical Design and Fabrication

Original Manuscript: July 30, 2007
Revised Manuscript: October 18, 2007
Manuscript Accepted: October 18, 2007
Published: October 19, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Seungwoo Lee, Yong-Cheol Jeong, and Jung-Ki Park, "Facile fabrication of close-packed microlens arrays using photoinduced surface relief structures as templates," Opt. Express 15, 14550-14559 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. C. F. Madigan, M. H. Lu, and J. C. Sturm, "Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification," Appl. Phys. Lett. 76, 1650-1652 (2000). [CrossRef]
  2. S. Möller, and S. R. J. Forrest, "Visual Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays," J. Appl. Phys. 91, 3324-3327 (2002). [CrossRef]
  3. M. Nathan, "Microlens reflector for out-of-plane optical coupling of a waveguide to a buried silicon photodiode," Appl. Phys. Lett. 85, 2688-2690 (2004). [CrossRef]
  4. K. Fujita, O. Nakamura, T. Kaneko, M. Oyamada, T. Takamatsu, and S. Kawata, "Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays," Opt. Commun. 174, 7-12 (2000). [CrossRef]
  5. B. R. Masters, "Three-dimensional confocal microscopy of the human optic nerve in vivo," Opt. Express 3, 356 (1998). [CrossRef] [PubMed]
  6. E. M. Vogel, M. H. Grabow, and S. W. Martin, "Role of silica densification in the performance of optical connectors," J. Non-Cryst. Solids 204, 95-98 (1996). [CrossRef]
  7. E. Bonaccurso, H.-J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, "Fabrication of microvessels and microlenses from polymers by solvent droplets," Appl. Phys. Lett. 85, 124101-124103 (2005). [CrossRef]
  8. M.-H. Wu, C. Park, and G. M. Whitesides, "Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography," Langmuir 18, 9312-9318 (2002). [CrossRef]
  9. S. Moon, N. Lee, and S. Kang, "Fabrication of a microlens array using micro-compression molding with an electroformed mold insert," J. Micromech. Microeng. 13, 98-103 (2003). [CrossRef]
  10. Q. Peng, Y. Guo, and S. Liu, "Real-time gray-scale photolithography for fabrication of continuous microstructure," Opt. Lett. 27, 1720-1722 (2002). [CrossRef]
  11. A. Kouchiyama, I. Ichimura, K. Kishima, T. Nakao, K. Yaamaoto, G. Hashimoto, A. Iida, and K. Osato "Optical recording using high numerical-aperture microlens by plasma etching," Jpn. J. Appl. Phys. 41, 1825-1828 (2002). [CrossRef]
  12. Y. Lu, Y. Yin, and Y. Xia, "A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers," Adv. Mater. 13, 34-37 (2001). [CrossRef]
  13. J.-Y. Huang, Y.-S. Lu, J. A. Yeh, "Self-assembled high NA microlens arrays using global dielectricphoretic energy wells," Opt. Express. 14, 10779-10784 (2006). [CrossRef] [PubMed]
  14. M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003). [CrossRef]
  15. H.J. Nam, D.-Y. Jung, G.-R. Yi, and H. Choi, "Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres," Langmuir 22, 7358-7363 (2006). [CrossRef] [PubMed]
  16. H. Wu, T. W. Odom, and G. M. Whitesides, "Generation of chrome masks with micrometer-scale features using microlens lithography," Adv. Mater. 14, 1213-1216 (2002). [CrossRef]
  17. X.-C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2-TiO2 sol-gel glass," Appl. Phys. Lett. 86, 114102-1-3 (2005).
  18. P. Rochon, E. Batalla, and A. Natansohn, "Optically induced surface gratings on azoaromatic polymer films," Appl. Phys. Lett. 66, 136-138 (1995). [CrossRef]
  19. D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, "Laser-induced holographic surface gratings on nonlinear optical polymer films," Appl. Phys. Lett. 66, 1166-1168 (1995). [CrossRef]
  20. A. Natansohn, and P. Rochon, "Photoinduced Motions in Azo-Containing Polymers," Chem. Rev. 102, 4139-4175 (2002). [CrossRef] [PubMed]
  21. N. Zettsu, and T. Seki, "Highly efficient photogeneration of surface relief structure and its immobilization in cross-linkable liquid crystalline azobenzene polymers," Macromolecules 37, 8692-8698 (2004). [CrossRef]
  22. P. Karageorgiev, B. Stiller, D. Prescher, B. Dietzel, B. Schulz, and L. Brehmer, "Modification of the surface potential of azobenzene-containing langmuir-blodgett films in the near field of a scanning Kevin microscope tip by irradiation," Langmuir 16, 5515-5518 (2000). [CrossRef]
  23. G. Pace, V. Ferri, C. Grave, M. Elbing, C. von Hänisch, M. Zharnikov, M. Mayor, M. A. Rampi, and P. Samori, "Cooperative light-induced molecular movements of highly ordered azobenzene self-assembled monolayers," Proc. Natl. Acad. Sci. USA 104, 9937-9942 (2007). [CrossRef] [PubMed]
  24. N. K. Viswanathan, D. Y. Kim, S. P. Bian, J. Williams, W. Liu, L. Li, and J. Kumar, "Surface relief structures on azo polymer films," J. Mater. Chem. 9, 1941-1955 (1999). [CrossRef]
  25. H. M. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, "Effects of polarization on laser holography for microstructure fabrication," Phys. Rev. E 67, 056619 1-6 (2007).
  26. M. J. Escuti, and G. P. Crawford, "Holographic photonic crystals," Opt. Eng. 43, 1973-1987 (2004). [CrossRef]
  27. S.-S. Kim, C. Chun, J.-C. Hong, and D.-Y. Kim, "Well-ordered TiO2 nanostructures fabricated using surface relief gratings on polymer films," J. Mater. Chem. 16, 370-375 (2006). [CrossRef]
  28. X. Wang, J. Kumar, S. K. Tripathy, L. Li, J.-I. Chen, S. Marturunkakul, "Epoxy-based nonlinear optical polymers from post azo coupling reaction," Macromolecules 30, 219-225 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited