OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 11 — Nov. 26, 2007

Quantitative Phase Microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography

P. Ferraro, L. Miccio, S. Grilli, M. Paturzo, S. De Nicola, A. Finizio, R. Osellame, and P. Laporta  »View Author Affiliations


Optics Express, Vol. 15, Issue 22, pp. 14591-14600 (2007)
http://dx.doi.org/10.1364/OE.15.014591


View Full Text Article

Enhanced HTML    Acrobat PDF (3462 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Quantitative Phase Microscopy (QPM) by interferometric techniques can require a multiwavelength configuration to remove 2p ambiguity and improve accuracy. However, severe chromatic aberration can affect the resulting phase-contrast map. By means of classical interference microscope configuration it is quite unpractical to correct such aberration. We propose and demonstrate that by Digital Holography (DH) in a microscope configuration it is possible to clear out the QPM map from the chromatic aberration in a simpler and more effective way with respect to other approaches. The proposed method takes benefit of the unique feature of DH to record in a plane out-of-focus and subsequently reconstruct numerically at the right focal image plane. In fact, the main effect of the chromatic aberration is to shift differently the correct focal image plane at each wavelength and this can be readily compensated by adjusting the corresponding reconstruction distance for each wavelength. A procedure is described in order to determine easily the relative focal shift among different imaging wavelengths by performing a scanning of the numerical reconstruction along the optical axis, to find out the focus and to remove at the same time the chromatic aberration.

© 2007 Optical Society of America

OCIS Codes
(070.4560) Fourier optics and signal processing : Data processing by optical means
(090.1000) Holography : Aberration compensation
(090.2880) Holography : Holographic interferometry

ToC Category:
Holography

History
Original Manuscript: July 23, 2007
Revised Manuscript: September 7, 2007
Manuscript Accepted: September 12, 2007
Published: October 19, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Citation
P. Ferraro, L. Miccio, S. Grilli, M. Paturzo, S. De Nicola, A. Finizio, R. Osellame, and P. Laporta, "Quantitative Phase Microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography," Opt. Express 15, 14591-14600 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-22-14591


Sort:  Year  |  Journal  |  Reset  

References

  1. J. C.  Wyant, "Testing aspherics using two-wavelength holography," Appl. Opt. 10, 2113-2118 (1971). [CrossRef] [PubMed]
  2. C.  Polhemus, "Two-wavelength interferometry," Appl. Opt.  12, 2071-2074 (1973). [CrossRef] [PubMed]
  3. F.  Bien, M.  Camac, H. J.  Caulfield, and S.  Ezekiel, "Absolute distance measurements by variable wavelength interferometry," Appl. Opt.  20, 400-402 (1981). [CrossRef] [PubMed]
  4. R.  Onodera and Y.  Ishii, "Two-wavelength interferometry that uses a fourier-transform method," Appl. Opt.  37, 7988-7994 (1998). [CrossRef]
  5. P.  de Groot and S.  Kishner, "Synthetic wavelength stabilization for two-color laser-diode interferometry," Appl. Opt.  30, 4026-4033 (1991). [CrossRef] [PubMed]
  6. R.  Dändliker, R.  Thalmann, and D.  Prongué, "Two-wavelength laser interferometry using superheterodyne detection," Opt. Lett.  13, 339-341 (1988). [CrossRef] [PubMed]
  7. C.  Wagner, W.  Osten, and S.  Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000). [CrossRef]
  8. M. S. Millán, J. Otón, and E. Pérez-Cabré, "Dynamic compensation of chromatic aberration in a programmable diffractive lens," Opt. Express 14, 9103-9012 (2006). [CrossRef] [PubMed]
  9. A. Roberts, K. Thorn, M. L. Michna, N. Dragomir, P. Farrel, and G. Baxter, "Determination of bending-induced strain in optical fibers by use of quantitative phase imaging," Opt. Lett. 27, 86 (2002). [CrossRef]
  10. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, "Hilbert phase microscopy for investigating fast dynamics in transparent systems," Opt. Lett. 30, 1165-1167 (2005). [CrossRef] [PubMed]
  11. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, "Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging," Opt. Lett. 30, 2131 (2005). [CrossRef] [PubMed]
  12. C. Fang-Yen, S. Oh, Y. Park, W. Choi, S. Song, H. S. Seung, R. R. Dasari, and M. S. Feld, "Imaging voltage-dependent cell motions with heterodyne Mach-Zehnder phase microscopy," Opt. Lett. 32, 1572-1574 (2007). [CrossRef] [PubMed]
  13. L. Xu, X. Peng, J. Miao, and A. K. Asundi, "Studies of digital microscopic holograpy with application to microstructure testing," Appl. Opt. 40, 5046 (2001). [CrossRef]
  14. F.  Charrière, A.  Marian, F.  Montfort, J.  Kuehn, T.  Colomb, E.  Cuche, P.  Marquet, and C.  Depeursinge, "Cell refractive index tomography by digital holographic microscopy," Opt. Lett.  31, 178-180 (2006). [CrossRef] [PubMed]
  15. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, "Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography," Opt. Express 13, 4492 (2005). [CrossRef] [PubMed]
  16. A. T.  Saucedo, F. M.  Santoyo, M. D. l. Torre-Ibarra, G. Pedrini, and W. Osten, "Endoscopic pulsed digital holography for 3d measurements," Opt. Lett.  14, 1468-1475 (2006).
  17. J. Garcia-Sucerquia, W. Xu, M, H. Jerico, and H. J. Kreuzer, "Immersion digital in-line holographic microscopy," Opt. Lett. 31, 1211-1213 (2006). [CrossRef] [PubMed]
  18. P. Picart, J. Leval, F. Piquet, J. P. Boileau, T. Guimezanes, and J. -P. Dalmont, "Tracking high amplitude auto-oscillations with digital Fresnel holograms," Opt. Express 15, 8263-8274 (2007). [CrossRef] [PubMed]
  19. G. Indebetouw and W. Zhong, "Scanning holographic microscopy of three-dimensional fluorescent specimens," J. Opt. Soc. Am. A 23, 1699-1707 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=josaa-23-7-1699> [CrossRef]
  20. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, "Whole optical wavefields reconstruction by digital holography," Opt. Express 9, 294-302 (2001). [CrossRef] [PubMed]
  21. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, "Focus plane detection criteria in digital holography microscopy by amplitude analysis," Opt. Express. 14, 5895-5908 (2006). [CrossRef] [PubMed]
  22. M. -K. Kim, "Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography," Opt. Express 7, 305-310 (2000). [CrossRef] [PubMed]
  23. N. Demoli, D. Vukicevic, and M. Torzynski, "Dynamic digital holographic interferometry with three wavelengths," Opt. Express 11, 767-774 (2003). [CrossRef] [PubMed]
  24. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, "Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms," Opt. Lett. 29, 854-856 (2004). [CrossRef] [PubMed]
  25. B. Javidi, P. Ferraro, S. -H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, "Three-dimensional image fusion by use of multiwavelength digital holography," Opt. Lett. 30, 144-146 (2005). [CrossRef] [PubMed]
  26. S. De Nicola, A. Finizio, G. Pierattini, D. Alfieri, S. Grilli, L. Sansone, and P. Ferraro, "Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations," Opt. Lett. 30, 2706-2708 (2005). [CrossRef] [PubMed]
  27. D.  Parshall and M.  Kim, "Digital holographic microscopy with dual wavelength phase unwrapping," Appl. Opt. 45, 451-459 (2006). [CrossRef] [PubMed]
  28. L. Yu and M. K. Kim, "Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method," Opt. Lett. 30, 2092-2094 (2005) [CrossRef] [PubMed]
  29. F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, "Submicrometer optical tomography by multiple-wavelength digital holographic microscopy," Appl. Opt. 45, 8209-8217 (2006) [CrossRef] [PubMed]
  30. Yamaguchi, T. Matsumura, and J. Kato, "Phase-shifting color digital holography," Opt. Lett. 27, 1108-1110 (2002). [CrossRef]
  31. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, "Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition," Opt. Express. 15, 7231-7242 (2007). [CrossRef] [PubMed]
  32. P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, and G. Pierattini, "Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time," Opt. Lett. 28, 1257-1259 (2003). [CrossRef] [PubMed]
  33. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, "Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator," Opt. Express 13, 612-620 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (320 KB)      QuickTime
» Media 2: MOV (2457 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited