OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 1 — Jan. 29, 2008

Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution

Juliette Selb, Anders M. Dale, and David A. Boas  »View Author Affiliations

Optics Express, Vol. 15, Issue 25, pp. 16400-16412 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (398 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present 3D linear reconstructions of time-domain (TD) diffuse optical imaging differential data. We first compute the sensitivity matrix at different delay gates within the diffusion approximation for a homogeneous semi-infinite medium. The matrix is then inverted using spatially varying regularization. The performances of the method and the influence of a number of parameters are evaluated with simulated data and compared to continuous-wave (CW) imaging. In addition to the expected depth resolution provided by TD, we show improved lateral resolution and localization. The method is then applied to reconstructing phantom data consisting of an absorbing inclusion located at different depths within a scattering medium.

© 2007 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.5280) Medical optics and biotechnology : Photon migration
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Image Processing

Original Manuscript: July 31, 2007
Revised Manuscript: September 21, 2007
Manuscript Accepted: September 25, 2007
Published: November 26, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Juliette Selb, Anders M. Dale, and David A. Boas, "Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution," Opt. Express 15, 16400-16412 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Obrig and A. Villringer, "Beyond the visible - imaging the human brain with light," J. Cereb. Blood Flow Metab. 23,1-18 (2002). [PubMed]
  2. A.P. Gibson, J.C. Hebden, and S.R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50,R1-R43 (2005). [CrossRef] [PubMed]
  3. Special section on Optics in Neuroscience, J. Biomed. Opt. 10 (2005).
  4. M.S. Patterson, B. Chance, and B.C. Wilson, "Time-resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties," Appl. Opt. 28, 2331-36 (1989). [CrossRef] [PubMed]
  5. V. Ntziachristos, XH. Ma, A.G. Yodh, and B. Chance, "Multichannel photon counting instrument for spatially resolved near infrared spectroscopy," Rev. Sci. Instrum. 70, 193-201 (1999). [CrossRef]
  6. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, H. Rinneberg, "Determining changes in NIR absorption using a layered model of the human head," Phys. Med. Biol. 46, 879-896 (2001). [CrossRef] [PubMed]
  7. A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, "Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging," Phys. Rev. Lett. 95 (078101), 1-4, (2005).
  8. J. Selb, J.J. Stott, M.A. Franceschini, A.G. Sorenson and D.A. Boas, "Improved sensitivity to cerebral dynamics during brain activation with a time-gated optical system: analytical model and experimental validation," J. Biomed. Opt. 10, 011013 (2005). [CrossRef]
  9. B. Montcel, R. Chabrier, P. Poulet, "Detection of cortical activation with time-resolved diffuse optical methods," Appl. Opt. 44, 1942-1947 (2005). [CrossRef] [PubMed]
  10. H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, "Multichannel time-resolved optical tomographic imaging system," Rev. Sci. Instrum. 70, 3595-3602 (1999). [CrossRef]
  11. J. Swartling, J.S. Dam, and S. Andersson-Engels, "Comparison of spatially and temporally resolved diffuse-reflectance measurements systems for determination of biomedical optical properties," Appl. Opt. 42, 4612-4620 (2003). [CrossRef] [PubMed]
  12. M. Schweiger and S.R. Arridge, "Application of temporal filters to time resolved data in optical tomography," Phys. Med. Biol. 44, 1699-1717 (1999). [CrossRef] [PubMed]
  13. F. Gao, Y. Tanikawa, H. Zhao, and Y. Yamada, "Semi-three-dimensional algorithm for time-resolved diffuse optical tomography by use of the generalized pulse spectrum technique," Appl. Opt. 41, 7346-7358 (2002). [CrossRef] [PubMed]
  14. A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, "Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons," Appl. Opt. 42, 5785-5790 (2003). [CrossRef] [PubMed]
  15. A. Kienle, T. Glanzmann, G. Wagnières, and H. van den Bergh, "Investigation of two-layered turbid media with time-resolved reflectance," Appl. Opt. 37, 6852-6862 (1998). [CrossRef]
  16. F. Martelli, S. Del Bianco, G. Zaccanti, A. Pifferi, A. Toricelli, A. Bassi, P. Taroni, and R. Cubeddu, "Phantom validation and in vivo application of an inversion procedure for retrieving the optical properties of diffusive layered media from time-resolved reflectance measurements," Opt. Lett. 29, (2004). [CrossRef] [PubMed]
  17. A. H. Barnett, J.P. Culver, A.G. Sorensen, A. Dale, and D.A. Boas, "Robust inference of baseline optical properties of the human head with three-dimensional segmentation from magnetic resonance imaging," Appl. Opt. 42, 3095-3108, (2003). [CrossRef]
  18. S.R. Hintz, D.A. Benaron, J.P. van Houten, J.L. Duckworth, F.W.H. Liu, S.D. Spilman, D.K. Stevenson, W.-F. Cheong, "Stationary headband for clinical time-of-flight optical imaging at the bedside," Photochem. Photobiol. 68, 361-369 (1999). [CrossRef]
  19. J.C. Hebden, A. Gibson, R. Yusof, N. Everdell, E.M.C. Hillman, D.T. Delpy, S.R. Arridge, T. Austin, J.H. Meek, J.S. Wyatt, "Three-dimensional optical tomography of the premature infant brain," Phys. Med. Biol. 47, 4155-4166 (2002) [CrossRef] [PubMed]
  20. A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, "Spatial and temporal analysis of human motor activity using noninvasive NIR topography," Med. Phys. 22, 1997-2005 (1995). [CrossRef] [PubMed]
  21. G. Gratton, P.M. Corballis, E. Cho, M. Fabiani, and D.C. Hood, "Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation," Psychophysiology 32, 505-509 (1995). [CrossRef] [PubMed]
  22. M.A. Franceschini, V. Toronov, M. Filiaci, E. Gratton, and S. Fantini, "On-line optical imaging of the human brain with 160 ms temporal resolution," Opt. Express 6, 49-57 (2000). [CrossRef] [PubMed]
  23. D.A. Boas, T.J. Gaudette, G. Strangman, X. Cheng, J.J.A. Marota, and J.B. Mandeville, "The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics," Neuroimage 13, 76-90 (2001). [CrossRef] [PubMed]
  24. D.T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, "Estimation of optical pathlength through tissue from direct time of flight measurement," Phys. Med. Biol. 33, 1433-1442 (1988). [CrossRef] [PubMed]
  25. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S.R. Arridge, P. van der Zee, and D.T. Delpy, "A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy," Phys. Med. Biol. 38, 1859-1876 (1993). [CrossRef] [PubMed]
  26. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, "Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons," Appl. Opt. 43, 3037-3047 (2004). [CrossRef] [PubMed]
  27. A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H Rinneberg, A. Villringer, and H. Obrig, "Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye-bolus by time-resolved diffuse reflectance," Neuroimage 24, 426-435 (2005). [CrossRef] [PubMed]
  28. M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, "Time-resolved optical imager for assessment of cerebral oxygenation", J. Biomed. Opt. 12, 034019 (2007). [CrossRef] [PubMed]
  29. D.A. Boas, K. Chen K, D. Grebert, and M.A. Franceschini, "Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans," Opt. Lett. 29, 1506-1508 (2004). [CrossRef] [PubMed]
  30. J. Selb, D.K. Joseph, and D.A. Boas, "Time-gated optical system for depth-resolved functional brain imaging," J. Biomed. Opt. 11, 044008 (2006). [CrossRef] [PubMed]
  31. R.C. Haskell, L.O. Svaasand, T.T. Tsay, T.C. Feng, M.S. McAdams, B.J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A 11, 2727-2741 (1994). [CrossRef]
  32. S.R. Arridge, "Photon-measurement density functions. Part I: Analytical forms," Appl. Opt. 34,7395-7409 (1995). [CrossRef] [PubMed]
  33. S. Carraresi, T.S.M. Shatir, F. Martelli, and G. Zaccanti, "Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration," Appl. Opt. 40, 4622-4632 (2001). [CrossRef]
  34. J.P. Culver, A.M. Siegel, J.J. Stott, and D.A. Boas, "Volumetric diffuse optical tomography of brain activity," Opt. Lett. 28, 2061-2063 (2003). [CrossRef] [PubMed]
  35. D.A. Boas, and A.M. Dale, "Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of the human brain function," Appl. Opt. 44, 1957-1968 (2005). [CrossRef] [PubMed]
  36. D. Comelli, A. assi, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, F. Martelli, and G. Zaccanti, "In vivo time-resolved reflectance spectroscopy of the human forehead," Appl. Opt. 46, 1717-1725 (2007). [CrossRef] [PubMed]
  37. F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "Optical tomographic mapping of cerebral haemodynamics by means of time-domain detection: methodology and phantom validation," Phys. Med. Biol. 49, 1055-1078 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited