OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 1 — Jan. 29, 2008

Discrimination of granulocyte subtypes from light scattering: theoretical analysis using a granulated sphere model

Maxim A. Yurkin, Konstantin A. Semyanov, Valeri P. Maltsev, and Alfons G. Hoekstra  »View Author Affiliations

Optics Express, Vol. 15, Issue 25, pp. 16561-16580 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (374 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We perform extensive simulations of light scattering by a granulated sphere in the size and refractive index range of human granulated leucocytes using the discrete dipole approximation. We calculate total and depolarized side scattering signals as a function of the size and refractive indices of cell and granules, and the granule volume fraction. Using typical parameters derived from the literature data on granulocyte morphology, we show that differences between experimentally measured signals of two granulocyte subtypes can be explained solely by the difference in their granule sizes. Moreover, the calculated depolarization ratio quantitatively agrees with experimental results. We also use the Rayleigh-Debye-Gans approximation and its second order extension to derive analytical expressions for side scattering signals. These expressions qualitatively describe the scaling of signals with varying model parameters obtained by rigorous simulations, and even lead to quantitative agreement in some cases. Finally, we show and discuss the dependence of extinction efficiency and asymmetry parameter on size and volume fraction of granules.

© 2007 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(170.1530) Medical optics and biotechnology : Cell analysis
(290.4210) Scattering : Multiple scattering
(290.5850) Scattering : Scattering, particles
(290.5855) Scattering : Scattering, polarization

ToC Category:

Original Manuscript: October 10, 2007
Revised Manuscript: November 12, 2007
Manuscript Accepted: November 12, 2007
Published: November 29, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Maxim A. Yurkin, Konstantin A. Semyanov, Valeri P. Maltsev, and Alfons G. Hoekstra, "Discrimination of granulocyte subtypes from light scattering: theoretical analysis using a granulated sphere model," Opt. Express 15, 16561-16580 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles, (Cambridge University Press, Cambridge, 2002).
  2. P. Chylek, G. Videen, D. J. W. Geldart, J. S. Dobbie, and H. C. W. Tso, "Effective medium approximations for heterogeneous particles," in Light Scattering by Nonspherical Particles, Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic Press, New York, 2000), pp. 273-308. [CrossRef]
  3. L. Kolokolova and B. A. S. Gustafson, "Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories," J. Quantum Spectrosc. Radiat. Transfer 70, 611-625 (2001). [CrossRef]
  4. N. V. Voshchinnikov, V. B. Il'in, and T. Henning, "Modelling the optical properties of composite and porous interstellar grains," Astron. Astrophys. 429, 371-381 (2005). [CrossRef]
  5. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering, (Cambridge University Press, Cambridge, 2006).
  6. Y. L. Xu and B. A. S. Gustafson, "Comparison between multisphere light-scattering calculations: Rigorous solution and discrete-dipole approximation," Astrophys. J. 513, 894-909 (1999). [CrossRef]
  7. D. W. Mackowski and M. I. Mishchenko, "Calculation of the T matrix and the scattering matrix for ensembles of spheres," J. Opt. Soc. Am. A 13, 2266-2278 (1996). [CrossRef]
  8. M. I. Mishchenko, L. Liu, D. W. Mackowski, B. Cairns, and G. Videen, "Multiple scattering by random particulate media: exact 3D results," Opt. Express 15, 2822-2836 (2007). [CrossRef] [PubMed]
  9. A. Taflove and S. C. Hagness, Advances in Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed., (Artech House, Boston, 2005).
  10. M. A. Yurkin and A. G. Hoekstra, "The discrete dipole approximation: an overview and recent developments," J. Quantum. Spectrosc. Radiat. Transfer 106, 558-589 (2007). [CrossRef]
  11. K. Lumme and J. Rahola, "Light-scattering by porous dust particles in the discrete-dipole approximation," Astrophys. J. 425, 653-667 (1994). [CrossRef]
  12. A. K. Dunn, "Modelling of light scattering from inhomogeneous biological cells," in Optics of Biological Particles, A. G. Hoekstra, V. P. Maltsev, and G. Videen, eds. (Springer, London, 2006), pp. 19-29.
  13. Flow Cytometry and Sorting, 2nd ed., M. R. Melamed, T. Lindmo, and M. L. Mendelson, eds. (Wiley-Liss, New York, 1990).
  14. B. G. de Grooth, L. W. Terstappen, G. J. Puppels, and J. Greve, "Light-scattering polarization measurements as a new parameter in flow cytometry," Cytometry 8, 539-544 (1987). [CrossRef] [PubMed]
  15. S. Suzuki and N. Eguchi, "Leukocyte differential analysis in multiple laboratory species by a laser multi-angle polarized light scattering separation method," Exp. Anim. 48, 107-114 (1999). [CrossRef] [PubMed]
  16. M. Hedhammar, M. Stenvall, R. Lonneborg, O. Nord, O. Sjolin, H. Brismar, M. Uhlen, J. Ottosson, and S. Hober, "A novel flow cytometry-based method for analysis of expression levels in Escherichia coli, giving information about precipitated and soluble protein," J. Biotech. 119, 133-146 (2005). [CrossRef]
  17. F. Lavergne-Mazeau, A. Maftah, Y. Cenatiempo, and R. Julien, "Linear correlation between bacterial overexpression of recombinant peptides and cell light scatter," Appl. Environ. Microbiol. 62, 3042-3046 (1996). [PubMed]
  18. L. W. M. M. Terstappen, B. G. de Grooth, K. Visscher, F. A. van Kouterik, and J. Greve, "Four-parameter white blood cell differential counting based on light scattering measurements," Cytometry 9, 39-43 (1988). [CrossRef] [PubMed]
  19. S. Lavigne, M. Bosse, L. P. Boulet, and M. Laviolette, "Identification and analysis of eosinophils by flow cytometry using the depolarized side scatter-saponin method," Cytometry 29, 197-203 (1997). [CrossRef] [PubMed]
  20. S. L. Perkins, "Normal blood and bone marrow values in humans," in Wintrobe's Clinical Hematology, 11th ed., J. P. Greer, J. Foerster, and J. N. Lukens, eds., (Lippincott Williams & Wilkins Publishers, Baltimore, USA, 2003), pp. 2738-2741.
  21. K. M. Skubitz, "Neutrophilic leukocytes," in Wintrobe's Clinical Hematology, 11th ed., J. P. Greer, J. Foerster, and J. N. Lukens, eds. (Lippincott Williams & Wilkins Publishers, Baltimore, USA, 2003), pp. 267-310.
  22. P. Lacy, A. B. Becker, and R. Moqbel, "The human eosinophil," in Wintrobe's Clinical Hematology, 11th ed., J. P. Greer, J. Foerster, and J. N. Lukens, eds., (Lippincott Williams & Wilkins Publishers, Baltimore, USA, 2003), pp. 311-334.
  23. H. P. Ting-Beall, D. Needham, and R. M. Hochmuth, "Volume and osmotic properties of human neutrophils," Blood 81, 2774-2780 (1993). [PubMed]
  24. P. Brederoo, J. van der Meulen, and A. M. Mommaas-Kienhuis, "Development of the granule population in neutrophil granulocytes from human bone marrow," Cell Tissue Res. 234, 469-496 (1983). [CrossRef] [PubMed]
  25. L. W. Diggs, D. Sturm, and A. Bell, The Morphology of Human Blood Cells, 5th ed., (Abbott Laboratories, Abbott Park, IL 60064, 1985).
  26. G. J. Puppels, H. S. P. Garritsen, G. M. J. Segers-Nolten, F. F. M. de Mul, and J. Greve, "Raman microspectroscopic approach to the study of human granulocytes," Biophys. J. 60, 1046-1056 (1991). [CrossRef] [PubMed]
  27. S. A. Livesey, E. S. Buescher, G. L. Krannig, D. S. Harrison, J. G. Linner, and R. Chiovetti, "Human neutrophil granule heterogeneity: immunolocalization studies using cryofixed, dried and embedded specimens," Scanning Microsc. Suppl 3, 231-239 (1989). [PubMed]
  28. W. T. Daems, "On the fine structure of human neutrophilic leukocyte granules," J. Ultrastruct. Res. 24, 343-348 (1968). [CrossRef] [PubMed]
  29. O. W. Bjerrum, "Human neutrophil structure and function with special reference to cytochrome b559 and beta 2-microglobulin," Dan. Med. Bull. 40, 163-189 (1993). [PubMed]
  30. D. F. Bainton, "Neutrophilic leukocyte granules: from structure to function," Adv. Exp. Med. Biol. 336, 17-33 (1993). [PubMed]
  31. A. E. Zharinov, P. A. Tarasov, A. N. Shvalov, K. A. Semyanov, D. R. van Bockstaele, and V. P. Maltsev, "A study of light scattering of mononuclear blood cells with scanning flow cytometry," J. Quantum. Spectrosc. Radiat. Transfer 102, 121-128 (2006). [CrossRef]
  32. K. A. Semyanov, A. E. Zharinov, P. A. Tarasov, M. A. Yurkin, I. G. Skribunov, D. R. van Bockstaele, and V. P. Maltsev, "Optics of leucocytes," in Optics of Biological Particles, A. G. Hoekstra, V. P. Maltsev, and G. Videen, eds., (Springer, London, 2006), pp. 253-264.
  33. C. F. Bohren and D. R. Huffman, Absorption and scattering of Light by Small Particles, (Wiley, New York, 1983).
  34. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength," J. Quant. Spectrosc. Radiat. Transfer 106, 546-557 (2007). [CrossRef]
  35. "Amsterdam DDA," http://www.science.uva.nl/research/scs/Software/adda> (2007).
  36. "Description of the national compute cluster Lisa," http://www.sara.nl/userinfo/lisa/description/> (2005).
  37. N. W. Ashcroft and J. Lekner, "Structure and resistivity of liquid metals," Phys. Rev. 145, 83-90 (1966). [CrossRef]
  38. M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids, (Oxford University Press, Oxford, 1989). 1. 39. V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications, (Springer, Berlin, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited