OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 1 — Jan. 29, 2008

Microrheology of red blood cell membranes using dynamic scattering microscopy

M. Shahrooz Amin, YoungKeun Park, Niyom Lue, Ramachandra R. Dasari, Kamran Badizadegan, Michael S. Feld, and Gabriel Popescu  »View Author Affiliations


Optics Express, Vol. 15, Issue 25, pp. 17001-17009 (2007)
http://dx.doi.org/10.1364/OE.15.017001


View Full Text Article

Enhanced HTML    Acrobat PDF (284 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We employ a novel optical technique, dynamic scattering microscopy (DSM), to extract the frequency dependence of the viscoelastic modulus associated with the red blood cell membrane. This approach applies the principle of dynamic light scattering to micro beads attached to the red blood cell membrane in thermal fluctuation. This allows for high-throughput characterization of a large number of cells simultaneously, which represents a significant advantage over current methods. The results in terms of the effective loss and storage moduli indicate the generic behavior of a viscoelastic material, characterized by power laws with exponents between 0 and 1.

© 2007 Optical Society of America

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(180.0180) Microscopy : Microscopy

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 17, 2007
Revised Manuscript: November 26, 2007
Manuscript Accepted: November 27, 2007
Published: December 5, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Citation
M. Shahrooz Amin, YougKeun Park, Niyom Lue, Ramachandra R. Dasari, Kamran Badizadegan, Michael S. Feld, and Gabriel Popescu, "Microrheology of red blood cell membranes using dynamic scattering microscopy," Opt. Express 15, 17001-17009 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-25-17001


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Brochard and J. F. Lennon, "Frequency spectrum of the flicker phenomenon in erythrocytes," J. Phys. 36, 1035-1047 (1975). [CrossRef]
  2. H. Engelhardt, H. Gaub, and E. Sackmann, "Viscoelastic properties of erythrocyte membranes in high-frequency electric fields," Nature 307, 378-380 (1984). [CrossRef] [PubMed]
  3. N. Gov, "Membrane undulations driven by force fluctuations of active proteins," Phys. Rev. Lett. 93, 268104 (2004). [CrossRef]
  4. N. Gov, A. Zilman, and S. Safran, "Cytoskeleton confinement of red blood cell membrane fluctuations," Biophys. J. 84, 486A-486A (2003).
  5. S. Levin and R. Korenstein, "Membrane fluctuations in erythrocytes are linked to Mgatp-dependent dyanamic assembly of the membrane skeleton," Biophys. J. 60, 733-737 (1991). [CrossRef] [PubMed]
  6. J. Liu, G. Lykotrafitis, M. Dao, and S. Suresh, "Cytoskeletal dynamics of human erythrocyte," Proc Natl Acad Sci U S A 104, 4937-4942 (2007). [CrossRef]
  7. R. Mukhopadhyay, G. Lim, and M. Wortis, "Echinocyte shapes: bending, stretching, and shear determine spicule shape and spacing," Biophys. J. 82, 1756-1772 (2002). [CrossRef] [PubMed]
  8. G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, "Observation of dynamic subdomains in red blood cells," J. Biomed. Opt. Lett. 11, 040503 (2006). [CrossRef]
  9. G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, "Erythrocyte structure and dynamics quantified by Hilbert phase microscopy," J. Biomed. Opt. Lett. 10, 060503 (2005). [CrossRef]
  10. G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, "Optical measurement of cell membrane tension," Phys. Rev. Lett. 97, 218101 (2006). [CrossRef] [PubMed]
  11. C. F. Schmidt, K. Svoboda, N. Lei, I. B. Petsche, L. E. Berman, C. R. Safinya, and G. S. Grest, "Existence of a flat phase in red cell membrane skeletons," Science 259, 952-955 (1993). [CrossRef] [PubMed]
  12. M. P. Sheetz, and S. J. Singer, "On the mechanism of ATP-induced shape changes in human erythrocyte membranes. I. The role of the spectrin complex," J Cell Biol. 73, 638-646 (1977). [CrossRef] [PubMed]
  13. S. Tuvia, A. Almagor, A. Bitler, S. Levin, R. Korenstein, and S. Yedgar, "Cell membrane fluctuations are regulated by medium macroviscosity: evidence for a metabolic driving force," Proc. Natl. Acad. Sci. U. S. A. 94, 5045-5049 (1997). [CrossRef] [PubMed]
  14. A. Zilker, M. Ziegler, and E. Sackmann, "Spectral-analysis of erythrocyte flickering in the 0.3-4-Mu-M-1 regime by microinterferometry combined with fast image-processing," Phys. Rev. A 46, 7998-8002 (1992). [CrossRef] [PubMed]
  15. G. Popescu, Y. K. Park, R. R. Dasari, K. Badizadegan, and M. S. Feld, "Coherence properties of red blood cell membrane motions," Phys. Rev. E. 76, 031902 (2007). [CrossRef]
  16. R. Lipowski and E. Sackman, Handbook of Biological Physics (Elsevier, 1995).
  17. C. A. Best, "Fatty acid ethyl esters and erythrocytes: metabolism and membrane effects, Ph.D. Thesis," in Pharmacy and Health Sciences (Northeastern University, Boston, 2005).
  18. S. Suresh, "Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships," J. Mater. Res. 21, 1871-1877 (2006). [CrossRef]
  19. G. Bao and S. Suresh, "Cell and molecular mechanics of biological materials," Nat. Mater 2, 715-725 (2003). [CrossRef] [PubMed]
  20. D. E. Discher, N. Mohandas, and E. A. Evans, "Molecular maps of red cell deformation: hidden elasticity and in situ connectivity," Science 266, 1032-1035 (1994). [CrossRef] [PubMed]
  21. M. Dao, C. T. Lim, and S. Suresh, "Mechanics of the human red blood cell deformed by optical tweezers," J. Mech. Phys. Solids 51, 2259-2280 (2003). [CrossRef]
  22. M. Puig-de-Morales, K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh, "Viscoelasticity of the human red blood cell," J. Appl. Physiol. 293, 597-605 (2007).
  23. N. Gov, A. G. Zilman, and S. Safran, "Cytoskeleton confinement and tension of red blood cell membranes," Phys. Rev. Lett. 90, 228101 (2003). [CrossRef] [PubMed]
  24. L. C. L. Lin and F. L. H. Brown, "Brownian dynamics in Fourier space: Membrane simulations over long length and time scales," Phys. Rev. Lett. 93,256001 (2004). [CrossRef]
  25. L. C. L. Lin, N. Gov, and F. L. H. Brown, "Nonequilibrium membrane fluctuations driven by active proteins," J. Chem. Phys. 124, 074903 (2006). [CrossRef]
  26. M. T. Valentine, A. K. Popp, P. D. Kaplan, and D. A. Weitz, "Microscope-based static light scattering apparatus," Opt. Lett. 26, 890892 (2001). [CrossRef]
  27. W. J. Cottrell, J. D. Wilson, and T. H. Foster, "Microscope enabling multimodality imaging, angle-resolved scattering, and scattering spectroscopy," Opt. Lett. 32, 2348-2350 (2007). [CrossRef] [PubMed]
  28. J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, "Two-point microrheology of inhomogeneous soft materials," Phys. Rev. Lett. 85, 888-891 (2000). [CrossRef] [PubMed]
  29. A. J. Levine and T. C. Lubensky, "One- and two-particle microrheology," Phys. Rev. Lett. 85, 1774-1777 (2000). [CrossRef] [PubMed]
  30. T. G. Mason, and D. A. Weitz, "Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids," Phys. Rev. Lett. 74, 1250-1253 (1995). [CrossRef] [PubMed]
  31. B. J. Bern and R. Pecora, Dynamic light scattering with applications to chemistry, biology and Phys. (Wiley, New York, 1976).
  32. G. Popescu and A. Dogariu, "Dynamic light scattering in localized coherence volumes," Opt. Lett. 26, 551-553 (2001). [CrossRef]
  33. N. A. Lange, Lange's Handbook of Chemistry (McGraw-Hill, 1999).
  34. S. J. Johnson, T. M. Bayerl, W. H. Wo, H. Noack, J. Penfold, R. K. Thomas, D. Kanellas, A. R. Rennie, and E. Sackmann, "Coupling of spectrin and polylysine to phospholipid monolayers studied by specular reflection of Neutrons," Biophys. J. 60, 1017-1025 (1991). [CrossRef] [PubMed]
  35. L. H. Deng, X. Trepat, J. P. Butler, E. Millet, K. G. Morgan, D. A. Weitz, and J. J. Fredberg, "Fast and slow dynamics of the cytoskeleton," Nat. Mater. 5, 636-640 (2006). [CrossRef] [PubMed]
  36. E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, "Microrheology of Biopolymer-Membrane Complexes," Phys. Rev. Lett. 85, 457-460 (2000). [CrossRef] [PubMed]
  37. L. H. Deng, N. J. Fairbank, B. Fabry, P. G. Smith, and G. N. Maksym, "Localized mechanical stress induces time-dependent actin cytoskeletal remodeling and stiffening in cultured airway smooth muscle cells," Am. J. Physiol.:Cell Physiol. 287, C440-C448 (2004). [CrossRef] [PubMed]
  38. B. Fabry, G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, and J. J. Fredberg, "Scaling the microrheology of living cells," Phys. Rev. Lett. 8714, art. no.-148102 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited