OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 1 — Jan. 29, 2008

High-Q cavities in multilayer photonic crystal slabs

Snjezana Tomljenovic-Hanic, C. Martijn de Sterke, M. J. Steel, Benjamin J. Eggleton, Yoshinori Tanaka, and Susumu Noda  »View Author Affiliations


Optics Express, Vol. 15, Issue 25, pp. 17248-17253 (2007)
http://dx.doi.org/10.1364/OE.15.017248


View Full Text Article

Enhanced HTML    Acrobat PDF (219 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel concept for creating high-Q cavities in photonic crystal slabs (PCS). These cavities are formed by depositing a polymer layer on top of a photonic crystal membrane fabricated in a high index semiconductor slab. We show that such multilayer structures exhibit a mode-gap and can yield high-Q microcavities with quality factors of Q~106. This allows the cavity to be created by polymer processing, following the much more demanding semiconductor processing that is used to generate a uniform PCS. Depending on the polymer used, these structures can be additionally tuned using photosensitivity or the electro-optic effect.

© 2007 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystal Cavities

History
Original Manuscript: September 28, 2007
Revised Manuscript: October 26, 2007
Manuscript Accepted: October 26, 2007
Published: December 10, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics
Physics and Applications of Microresonators (2007) Optics Express

Citation
Snjezana Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, Benjamin J. Eggleton, Yoshinori Tanaka, and Susumu Noda, "High-Q cavities in multilayer photonic crystal slabs," Opt. Express 15, 17248-17253 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-25-17248


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Asano, B.S. Song, and S. Noda, "Analysis of the experimental Q factors (~1 million) of photonic crystal nanocavities," Opt. Express 14, 1996-2002 (2006). [CrossRef] [PubMed]
  2. A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, "Ultrasmall multi-channel resonant-tunneling filter using mode-gap of width-tuned photonic-crystal waveguide," Opt. Express 13, 4202-4209 (2005). [CrossRef] [PubMed]
  3. S. Tomljenovic-Hanic, M.J. Steel, C.M. de Sterke and J. Salzman, "Diamond based photonic crystal microcavities," Opt. Express 14, 3556-3562 (2006). [CrossRef] [PubMed]
  4. M. Loncar, and A. Scherer, "Microfabricated optical cavities and photonic crystals," in Optical microcavities, K. Vahala, ed. (World Scientific Publishing, 2004).
  5. M. Loncar and A. Scherer, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003). [CrossRef]
  6. R. van der Heijden, C.F. Carlström, J.A.P. Snijders, R.W. van der Heijden, F. Karouta, R. Nötzel, H.W.M. Salemink, B.K.C. Kjellander, C.W.M. Bastiaansen, D.J. Broer, and E. van der Drift, "InP-based two-dimensional photonic crystals filled with polymers," Appl. Phys. Lett. 88161112 (2006). [CrossRef]
  7. J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L.A. Dunbar, R. Houdré, M. Mulot, and S. Anand, "Liquid crystal infiltration of InP-based planar photonic crystal," J. Appl. Phys. 99, 103105 (2006). [CrossRef]
  8. C.L.C. Smith, D.K.C. Wu, M.W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B.J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen and Y.-H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (2007). [CrossRef]
  9. F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, "Rewritable photonic circuits," Appl. Phys. Lett. 89, 211117 (2006). [CrossRef]
  10. M.W. Lee, C.L.C. Smith, C. Grillet, B.J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan and Y.-H. Lee, "Photosensitive post tuning of chalcogenide photonic crystal waveguides," Opt. Express 15, 1277-1285 (2007). [CrossRef] [PubMed]
  11. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct laser writing of three-dimensional photonic crystals with a complete pohotonic band gap in chalcogenide glasses," Adv. Mater. 18, 265-269 (2006). [CrossRef]
  12. J. Vydra, H Beisingoff, T. Tschudi and M. Eich, "Photodecay mechanisms in side chain nonlinear optical polymethacrylates," Appl. Phys. Lett. 69,1035-1037 (1996). [CrossRef]
  13. A. Zakery, and S.R. Elliot, "Optical properties and applications of chalcogenide glasses: a review," J. Non-Cryst.Sol. 330, 1-12 (2003). [CrossRef]
  14. B.S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, "Transmission and reflection characteristics of in-plane hetero-photonic crystals," Appl. Phys. Lett. 85, 4591-4593 (2004). [CrossRef]
  15. B.S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005). [CrossRef]
  16. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006). [CrossRef]
  17. S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature Photonics 1, 449-458 (2007). [CrossRef]
  18. S. Tomljenovic-Hanic, C.M. de Sterke, and M.J. Steel, "Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration," Opt. Express 14, 12451-12456 (2006). [CrossRef] [PubMed]
  19. S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke and D. J. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett. 32, 542-544 (2007). [CrossRef] [PubMed]
  20. M.N.J. Diemeer, "Polymeric thermo-optic space switch for optical communications," Opt. Mater. 9,192-200 (1998). [CrossRef]
  21. R.M. Ridder, A. Driessen, E. Rikkers, P.V. Lambeck, and M.N.J. Diemeer, "Design and fabrication of electro-optic polymer modulators and switches," Opt. Mater. 12, 205-214 (1999). [CrossRef]
  22. V.A. Mandelshtam and H.S. Taylor, "Harmonic inversion of time signals," J. Chem. Phys. 107, 6756-6769 (1997). [CrossRef]
  23. J.P. Harmon, "Polymers for optical fibers and waveguides: An Overview," in Optical polymers fibers and waveguides, J.P. Harmon, and G.K. Noren, eds. (American Chemical Society, 2001) pp. 1-23. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited