OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 1 — Jan. 29, 2008

Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere

Alexander Heifetz, Jamesina J. Simpson, Soon-Cheol Kong, Allen Taflove, and Vadim Backman  »View Author Affiliations

Optics Express, Vol. 15, Issue 25, pp. 17334-17342 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (150 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically investigate light scattering from a bi-sphere system consisting of a gold nanosphere and a lossless dielectric microsphere illuminated at a resonant optical wavelength of the microsphere. Using generalized multisphere Mie theory, we find that a gold nanosphere 100 times smaller than the dielectric microsphere can be detected with a subdiffraction resolution as fine as one-third wavelength in the background medium when the microsphere is illuminated at a Mie resonance. Otherwise, off-resonance, the spatial resolution reverts to that of the nonresonant nanojet, approximately one-half wavelength in the background medium. An important potential biophotonics application is the detection of antibody-conjugated gold nanoparticles attached to the membranes of living cells in an aqueous environment.

© 2007 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(290.1350) Scattering : Backscattering
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles

ToC Category:
Novel Concepts and Theory

Original Manuscript: October 1, 2007
Revised Manuscript: November 14, 2007
Manuscript Accepted: November 14, 2007
Published: December 10, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics
Physics and Applications of Microresonators (2007) Optics Express

Alexander Heifetz, Jamesina J. Simpson, Soon-Cheol Kong, Allen Taflove, and Vadim Backman, "Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere," Opt. Express 15, 17334-17342 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Liang and Y.T. Lo, "Scattering by two spheres," Radio Sci 2, 1481-1495 (1967).
  2. R.T. Wang, J.M. Greenberg, D.W. Shuerman, "Experimental results of dependent light scattering by two spheres," Opt. Lett. 6, 543-545 (1981). [CrossRef] [PubMed]
  3. G.W. Kattawar and C.E. Dean, "Electromagnetic scattering from two dielectric spheres: comparison between theory and experiment," Opt. Lett. 8, 48-50 (1983). [CrossRef] [PubMed]
  4. M. I. Mishchenko and D. W. Mackowski, "Light scattering by randomly oriented bispheres," Opt. Lett. 19, 1604-1606 (1994). [CrossRef] [PubMed]
  5. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, "Scattering of light by bispheres with touching and separated components," Appl. Opt. 34, 4589-4599 (1995). [CrossRef] [PubMed]
  6. H. T. Miyazaki, H. Miyazaki, and K. Miyano, "Analysis of specular resonance in dielectric bispheres using rigorous and geometrical-optics theories," J. Opt. Soc. Am. A 20, 1771-1784 (2003). [CrossRef]
  7. H.T. Miyazaki, H. Miyazaki, and K. Miyano, "Anomalous scattering by dielectric bispheres in the specular direction," Opt. Lett. 27, 1208-1210 (2002). [CrossRef]
  8. S. P. Ashili, V. N. Astratov, and E. C. H. Sykes, "The effects of inter-cavity separation on optical coupling in dielectric bispheres," Opt. Express 14, 9460-9466 (2006). [CrossRef] [PubMed]
  9. Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique," Opt. Express 12, 1214-1220 (2004). [CrossRef] [PubMed]
  10. X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3D photonic nanojets," Opt. Express 13, 526-533 (2005). [CrossRef] [PubMed]
  11. Z. Chen, X. Li, A. Taflove and V. Backman, "Super-enhanced backscattering of light by nanoparticles," Opt. Lett. 31, 196-198 (2006). [CrossRef] [PubMed]
  12. A. Heifetz, K. Huang, A.V. Sahakian, X. Li, A. Taflove, V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006). [CrossRef]
  13. I. H. El-Sayed, X. Huang, and M.A. El-Sayed, "Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer," Nano Lett. 5, 829-834 (2005). [CrossRef] [PubMed]
  14. K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital imaging of pre-cancer using anti-EGFR antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003). [PubMed]
  15. Y.L. Xu, "Electronagnetic scattering by an aggregate of spheres," Appl. Opt. 34, 4573-4588 (1995). [CrossRef] [PubMed]
  16. S. Tanev, V.V. Tuchin, P. Paddon, "Cell membrane and gold nanoparticles effects on optical immersion experiments with non-cancerous and cancerous cells: finite-difference time-domain modeling," J. Biomed. Opt. 11, 064037 (2006). [CrossRef]
  17. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Boston: Artech House 2005).
  18. A. V. Itagi and W. A. Challener, "Optics of photonic nanojets," J. Opt. Soc. Am. A 22, 2847-2858 (2005). [CrossRef]
  19. S. Lecler, Y. Takakura, and P. Meyrueis, "Properties of a three-dimensional photonic jet," Opt. Lett. 30, 2641-2643 (2005). [CrossRef] [PubMed]
  20. S. Lecler, S. Haacke, N. Lecong, O. Crégut, J. -L. Rehspringer, and C. Hirlimann, "Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres," Opt. Express 15, 4935-4942 (2007). [CrossRef] [PubMed]
  21. A. M. Kapitonov and V. N. Astratov, "Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities," Opt. Lett. 32, 409-411 (2007). [CrossRef] [PubMed]
  22. Z. Chen, X. Li, A. Taflove, and V. Backman, "Enhanced backscattering of light by nanoparticles positioned in localized optical intensity peaks," Appl. Opt. 45, 633-638 (2006). [CrossRef] [PubMed]
  23. H. C. van de Hulst, Light Scattering by Small Particles (Dover 1981).
  24. P.W. Barber and R.K. Change (Editors), Optical Effects Associated with Small Particles (World Scientific 1988).
  25. M.H. Fields, J. Popp, and R.K. Chang, "Nonlinear optics in microspheres," in Progress in Optics41, E. Wolf (editor), 1-96 (2000).
  26. http://www.microspheres-nanospheres.com
  27. P.B. Johnson and R.W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  28. A. Giusto, S. Savasta, and R. Saija, "Nanoprobe control of morphology-dependent resonances of microspheres: A theoretical description," Phys. Rev. B 71, 113415 (2005). [CrossRef]
  29. M. Sasaki, T. Kurosawa, and K. Hane, "Microobjective manipulated with optical tweezers," Appl. Phys. Lett. 70, 785-787 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited