OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 1 — Jan. 29, 2008

Quantitative polarized phase microscopy for birefringence imaging

Nicoleta M. Dragomir, Xiao M. Goh, Claire L. Curl, Lea. M. D. Delbridge, and Ann Roberts  »View Author Affiliations


Optics Express, Vol. 15, Issue 26, pp. 17690-17698 (2007)
http://dx.doi.org/10.1364/OE.15.017690


View Full Text Article

Enhanced HTML    Acrobat PDF (770 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel application of quantitative phase imaging under linearly polarized light is introduced for studying unstained anisotropic live cells. The method is first validated as a technique for mapping the twodimensional retardation distribution of a well-characterized optical fiber and is then applied to the characterization of unstained isolated cardiac cells. The experimental retardation measurements are in very good agreement with the established Brace-Köhler method, and additionally provide spatially resolved cell birefringence and phase data.

© 2007 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.2350) Imaging systems : Fiber optics imaging
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(170.1530) Medical optics and biotechnology : Cell analysis
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

ToC Category:
Microscopy

History
Original Manuscript: October 19, 2007
Revised Manuscript: December 9, 2007
Manuscript Accepted: December 9, 2007
Published: December 12, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Nicoleta M. Dragomir, Xiao M. Goh, Claire L. Curl, Lea M. D. Delbridge, and Ann Roberts, "Quantitative polarized phase microscopy for birefringence imaging," Opt. Express 15, 17690-17698 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-26-17690


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Mansuripur, Classical Optics and its Applications, (Cambridge University Press Cambridge, 2002).
  2. C. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K. A. Nugent and L.M. Delbridge, "Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells," Clin. Exp. Pharmacol. P. 31, 896-901 (2004). [CrossRef]
  3. N.H. Hartshorne and A. Stuart, Crystals and the polarising microscope, (Edward Arnold Ltd. London, 1970).
  4. C. K. Hitzenberger, E. Gotzinger, M. Sticker, M Pircher and A. F. Fercher, "Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography," Opt. Express 9, 780-789 (2001). [CrossRef] [PubMed]
  5. T. Oka and T. Kaneko, "Compact complete imaging polarimeter using birefringent wedge prisms," Opt. Express 11, 1510-1519 (2003). [CrossRef] [PubMed]
  6. M. Shribak and R. Oldenbourg, "Techniques for fast and sensitive measurements of two-dimensional birefringence distributions," Appl. Opt. 42, 3009-3017 (2003). [CrossRef] [PubMed]
  7. T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R. P. Salathé and C. Depeursinge, "Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements," Appl. Opt. 44, 4461-4469 (2005). [CrossRef] [PubMed]
  8. C.C. Montarou, T.K. Gaylord, B.L. Bachim, A.I. Dachevski and A. Agarwal, "Two-wave plate compensator method for full-field retardation measurements," Appl. Opt. 45, 271-280 (2006). [CrossRef] [PubMed]
  9. F. El-Diasty, "Interferometric determination of induced birefringence due to bending in single-mode optical fibers," J. Opt. A: Pure & Appl. Opt. 1, 197-200 (1999). [CrossRef]
  10. A. Roberts, K. Thorn, M. L. Michna, N. M. Dragomir, P. M. Farrell and G. W. Baxter, "Determination of bending-induced strain in optical fibers by use of quantitative phase imaging," Opt. Lett. 27, 86-88 (2002). [CrossRef]
  11. N. M. Dragomir, G. W. Baxter and A. Roberts, "Phase-sensitive imaging techniques applied to optical fibre characterisation," IEE Proc. Optoel. 153, 217-221 (2006). [CrossRef]
  12. R. Oldenbourg, "Analysis of edge birefringence," Biophys. J. 60, 629-641 (1991). [CrossRef] [PubMed]
  13. C.C. Montarou and T.K. Gaylord, "Two-wave-plate compensator method for single point retardation measurements," Appl. Opt. 43, 6580-6595 (2004). [CrossRef]
  14. R. Oldenbourg and G. Mei, "New polarized light microscope with precision universal compensator," J. Microsc. 180, 140-147 (1995). [CrossRef] [PubMed]
  15. Y. Ohtsuka and T. Oka, "Contour mapping of the spatiotemporal state of polarization of light," Appl. Opt. 33, 2633-2636 (1994). [CrossRef] [PubMed]
  16. J.G. Pickering and D.R. Boughner, "Quantitative assesement of the age of fibrotic lesions using polarized light microscopy and digital image analysis," Am. J. Pathol. 138, 1225-1231 (1991). [PubMed]
  17. L.H. Chow, D.R. Boughner, J.D. Buyze, H. Finlay and J.G. Pickering, "Enhanced detection of cardiac myocyte damage by polarized light microscopy: Use in a model of coxsackievirus B3-induced myocarditis," Cardiovasc. Pathol. 10, 83-86 (2001). [CrossRef] [PubMed]
  18. C.W. Sun, Y.M. Wang, L.S. Lu, C.W. Lu, I.J. Hsu, Tsai. M.T., C.C. Yang, Y.W. Kiang and C.C. Wu, "Myocardial tissue characterization based on a polarization-sensitive optical coherence tomography system with an ultrashort pulsed laser," J. Biomed. Opt. 11, 54016 (2006). [CrossRef]
  19. S. K. Nadkarni, M. P. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser and G. J. Tearney, "Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography," J. Am. Coll. Cardiol. 49, 1474-1481 (2007). [CrossRef] [PubMed]
  20. P. Whittaker, "Histological signatures of thermal injury: Applications in transmyocardial laser revascularization and radiofrequency ablation," Laser. Surg. Med.  27 (2000). [CrossRef]
  21. S.M. Baylor and H. Oetliker, "A large birefringence signal preceding contraction in single twitch fibres of the frog," J. Physiol. 264, 141-162 (1977). [PubMed]
  22. J. Poledna and M. Morad, "Effect of caffeine on the birefringence signal in single skeletal muscle fibers and mammalian heart," Pflüg.Arch. Eu. J. Physiol. 397, 174-189 (1983).
  23. J. Chayen, L. Bitensky, BraimbridgeM.V.  and S. Darracott-Cankovic, "Increased myosin orientation during muscle contraction: A measure of cardiac contractility," Cell Biochem. & Funct. 3, 101-114 (1985). [CrossRef] [PubMed]
  24. T. Kobayashi and R.J. Solaro, " Calcium, thin Filaments and the integrative biology of cardiac contractility," Annu. Rev. Physiol. 67, 39-67 (2005). [CrossRef] [PubMed]
  25. A. Barty, K. A. Nugent, D. Paganin and A. Roberts, "Quantitative optical phase microscopy," Opt. Lett. 23, 817-819 (1998). [CrossRef]
  26. N. Streibl, "Three-dimensional imaging by a microscope," J. Opt. Soc. Am. A A 2, 121-127 (1985). [CrossRef]
  27. E.D. Barone-Nugent, A. Barty and K.A. Nugent, "Quantitative phase-amplitude microscopy I: optical microscopy," J. Microsc. 206, 194-203 (2002). [CrossRef] [PubMed]
  28. C. Curl, C.J. Bellair, P.J. Harris, B.E. Allman, A. Roberts, K. A. Nugent and L.M. Delbridge, "Single cell volume measurement by Quantitative Phase Microscopy (QPM): A case study of erythrocyte morphology," Cell. Physiol. Biochem. 17, 193-200 (2006). [CrossRef] [PubMed]
  29. E. Ampem-Lassen, A. Roberts, S. T. Huntington, N. M. Dragomir and K. A. Nugent, "Refractive index profiling of axisymmetric optical fibres: a new technique," Opt. Express 13, 3277-3282 (2005). [CrossRef] [PubMed]
  30. N. M. Dragomir, E. Ampem-Lassen, G. W. Baxter, P. Pace, S. T. Huntington, A.J. Stevenson and A. Roberts, "Analysis of changes in optical fibres during arc-fusion splicing by use of quantitative phase imaging," Microsc. Res. Tech. 69, 847-851 (2006). [CrossRef] [PubMed]
  31. N. M. Dragomir, X. M. Goh and A. Roberts, "Three-dimensional refractive index reconstruction with quantitative phase tomography," Microsc. Res. Tech. (In Press Sep 2007). [PubMed]
  32. M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light, (Cambridge University Press Cambridge, 1999).
  33. T.R. Sliker, "Linear electro-optic effects in class 32,6,3m and 43m crystals," J. Opt. Soc. Am. A 54, 1348-1351 (1964). [CrossRef]
  34. M. Irving, "Birefringece changes associated with isomeric contraction and rapid shortening steps in frog skeletal muscle fibres," J. Physiol. 472, 127-156 (1993). [PubMed]
  35. P-S. Jouk, Y. Usson, G. Michalowicz and F. Parazza, "Mapping of the orientation of myocardial cells by means of polarized light and confocal scanning laser microscopy," Microsc. Res. Tech. 30, 480-490 (1995). [CrossRef] [PubMed]
  36. M. Sonka, V. Hlavac and V. Boyle, Image Processing, Analysis, and Machine Vision, (Chapman and Hall Cambridge, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited