OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 1 — Jan. 29, 2008

Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers

Maxim A. Yurkin, Alfons G. Hoekstra, R. Scott Brock, and Jun Q. Lu  »View Author Affiliations

Optics Express, Vol. 15, Issue 26, pp. 17902-17911 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (258 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We compare the discrete dipole approximation (DDA) and the finite difference time domain (FDTD) method for simulating light scattering of spheres in a range of size parameters x up to 80 and refractive indices m up to 2. Using parallel implementations of both methods, we require them to reach a certain accuracy goal for scattering quantities and then compare their performance. We show that relative performance sharply depends on m. The DDA is faster for smaller m, while the FDTD for larger values of m. The break-even point lies at m=1.4. We also compare the performance of both methods for a few particular biological cells, resulting in the same conclusions as for optically soft spheres.

© 2007 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(170.1530) Medical optics and biotechnology : Cell analysis
(290.5850) Scattering : Scattering, particles

ToC Category:

Original Manuscript: October 10, 2007
Revised Manuscript: November 29, 2007
Manuscript Accepted: December 5, 2007
Published: December 17, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Maxim A. Yurkin, Alfons G. Hoekstra, R. S. Brock, and Jun Q. Lu, "Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers," Opt. Express 15, 17902-17911 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Yurkin and A. G. Hoekstra, "The discrete dipole approximation: an overview and recent developments," J. Quant. Spectrosc. Radiat. Transfer 106,558-589 (2007). [CrossRef]
  2. B. T. Draine and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A 11,1491-1499 (1994). [CrossRef]
  3. A. Taflove and S. C. Hagness, Advances in Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed., (Artech House, Boston, 2005).
  4. P. Yang and K. N. Liou, "Finite difference time domain method for light scattering by nonspherical and inhomogeneous particles," in Light Scattering by Nonspherical Particles, Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic Press, New York, 2000), pp. 173-221.
  5. Y. You, G. W. Kattawar, C. H. Li, and P. Yang, "Internal dipole radiation as a tool for particle identification," Appl. Opt. 45,9115-9124 (2006). [CrossRef] [PubMed]
  6. J. P. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, "Light scattering by multiple red blood cells," J. Opt. Soc. Am. A 21,1953-1961 (2004). [CrossRef]
  7. T. Wriedt and U. Comberg, "Comparison of computational scattering methods," J. Quant. Spectrosc. Radiat. Transfer 60,411-423 (1998). [CrossRef]
  8. I. V. Kolesnikova, S. V. Potapov, M. A. Yurkin, A. G. Hoekstra, V. P. Maltsev, and K. A. Semyanov, "Determination of volume, shape and refractive index of individual blood platelets," J. Quant. Spectrosc. Radiat. Transfer 102,37-45 (2006). [CrossRef]
  9. M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, "Experimental and theoretical study of light scattering by individual mature red blood cells with scanning flow cytometry and discrete dipole approximation," Appl. Opt. 44,5249-5256 (2005). [CrossRef] [PubMed]
  10. R. S. Brock, X. Hu, P. Yang, and J. Q. Lu, "Evaluation of a parallel FDTD code and application to modeling of light scattering by deformed red blood cells," Opt. Express 13,5279-5292 (2005). [CrossRef] [PubMed]
  11. R. S. Brock, X. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, "Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images," J. Quant. Spectrosc. Radiat. Transfer 102,25-36 (2006). [CrossRef]
  12. R. S. Brock and J. Q. Lu, "Numerical dispersion correction in a parallel FDTD code for the modeling of light scattering by biologic cells," to be submitted to Appl. Opt.
  13. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength," J. Quant. Spectrosc. Radiat. Transfer 106,546-557 (2007). [CrossRef]
  14. "Amsterdam DDA," http://www.science.uva.nl/research/scs/Software/adda (2007).
  15. A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, "Comparison between discrete dipole implementations and exact techniques," J. Quant. Spectrosc. Radiat. Transfer 106,417-436 (2007). [CrossRef]
  16. N. B. Piller and O. J. F. Martin, "Increasing the performance of the coupled-dipole approximation: A spectral approach," IEEE Trans. Ant. Propag. 46,1126-1137 (1998). [CrossRef]
  17. A. Rahmani, P. C. Chaumet, and G. W. Bryant, "Coupled dipole method with an exact long-wavelength limit and improved accuracy at finite frequencies," Opt. Lett. 27,2118-2120 (2002). [CrossRef]
  18. P. C. Chaumet, A. Sentenac, and A. Rahmani, "Coupled dipole method for scatterers with large permittivity," Phys. Rev. E 70,036606 (2004). [CrossRef]
  19. N. B. Piller, "Influence of the edge meshes on the accuracy of the coupled-dipole approximation," Opt. Lett. 22,1674-1676 (1997). [CrossRef]
  20. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "Convergence of the discrete dipole approximation. I. Theoretical analysis," J. Opt. Soc. Am. A 23,2578-2591 (2006). [CrossRef]
  21. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic-waves," J. Comp. Phys. 114,185-200 (1994). [CrossRef]
  22. B. T. Draine, "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333,848-872 (1988). [CrossRef]
  23. "Lemieux," http://www.psc.edu/machines/tcs/ (2006).
  24. P. A. Avrorov, M. A. Yurkin, K. A. Semyanov, A. G. Hoekstra, P. A. Tarasov, and V. P. Maltsev, "Characterization of mature red blood cells with scanning flow cytometry," in preparation.
  25. P. W. Kuchel and E. D. Fackerell, "Parametric-equation representation of biconcave erythrocytes," Bull. Math. Biol. 61,209-220 (1999). [CrossRef]
  26. R. Hurwitz, J. Hozier, T. LeBien, J. Minowada, K. Gajl-Peczalska, I. Kubonishi, and J. Kersey, "Characterization of a leukemic cell line of the pre-B phenotype," Int. J. Cancer 23,174-180 (1979). [CrossRef] [PubMed]
  27. R. S. Brock, H. Ding, D. A. Weidner, T. J. McConnel, X. Hu, J. R. Mourant, and J. Q. Lu, "Modeling of the internal optical structure of the nuclei of B-cells," in Frontiers in Optics (Optical Society of America, 2006), p. FTuE2.
  28. "Description of the national compute cluster Lisa," http://www.sara.nl/userinfo/lisa/description/ (2005).
  29. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, "Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy," J. Opt. Soc. Am. A 23,2592-2601 (2006). [CrossRef]
  30. I. Ayranci, R. Vaillon, and N. Selcuk, "Performance of discrete dipole approximation for prediction of amplitude and phase of electromagnetic scattering by particles," J. Quant. Spectrosc. Radiat. Transfer 103,83-101 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited