OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 1 — Jan. 29, 2008

Detection of multiple scattering in optical coherence tomography using the spatial distribution of Stokes vectors

Steven G. Adie, Timothy R. Hillman, and David D. Sampson  »View Author Affiliations

Optics Express, Vol. 15, Issue 26, pp. 18033-18049 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (6367 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multiple scattering is one of the main degrading influences in optical coherence tomography, but to date its presence in an image can only be indirectly inferred. We present a polarization-sensitive method that shows the potential to detect it more directly, based on the degree to which the detected polarization state at any given image point is correlated with the mean state over the surrounding region. We report the validation of the method in microsphere suspensions, showing a strong dependence of the degree of correlation upon the extent to which multiply scattered light is coherently detected. We demonstrate the method’s utility in various tissues, including chicken breast ex vivo and human skin and nailfold in vivo.

© 2007 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(260.5430) Physical optics : Polarization
(290.1350) Scattering : Backscattering
(290.4210) Scattering : Multiple scattering

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 5, 2007
Revised Manuscript: December 13, 2007
Manuscript Accepted: December 14, 2007
Published: December 18, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Steven G. Adie, Timothy R. Hillman, and David D. Sampson, "Detection of multiple scattering in optical coherence tomography using the spatial distribution of Stokes vectors," Opt. Express 15, 18033-18049 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Schmitt, "Optical Coherence Tomography (OCT): A review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999). [CrossRef]
  2. J. M. Schmitt and A. Knüttel, "Model of optical coherence tomography of heterogeneous tissue," J. Opt. Soc. Am. A 14, 1231-1242 (1997). [CrossRef]
  3. Y. T. Pan, R. Birngruber, and R. Engelhardt, "Contrast limits of coherence-gated imaging in scattering media," Appl. Opt. 36, 2979-2983 (1997). [CrossRef] [PubMed]
  4. M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, "Multiple-scattering in optical coherence microscopy," Appl. Opt. 34, 5699-5707 (1995). [CrossRef] [PubMed]
  5. H. T. Yura and L. Thrane, "The effects of multiple scattering on axial resolution in optical coherence tomography," in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), paper CThI5.
  6. Q. Lu, X. S. Gan, M. Gu, and Q. M. Luo, "Monte Carlo modeling of optical coherence tomography imaging through turbid media," Appl. Opt. 43, 1628-1637 (2004). [CrossRef] [PubMed]
  7. J. M. Schmitt, A. Knüttel, and R. F. Bonner, "Measurement of optical properties of biological tissues by lowcoherence reflectometry," Appl. Opt. 32, 6032-6042 (2004). [CrossRef]
  8. J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, "Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994). [CrossRef] [PubMed]
  9. D. D. Sampson and T. R. Hillman, "Optical coherence tomography," in Lasers and Current Optical Techniques in Biology, G. Palumbo and R. Pratesi, eds. (ESP Comprehensive Series in Photosciences, Cambridge, UK, 2004), pp. 481-571.
  10. K. K. Bizheva, A. M. Siegel, and D. A. Boas, "Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy," Phys. Rev. E 58, 7664-7667 (1998). [CrossRef]
  11. A. Wax, C. H. Yang, R. R. Dasari, and M. S. Feld, "Path-length-resolved dynamic light scattering: modeling the transition from single to diffusive scattering," Appl. Opt. 40, 4222-4227 (2001). [CrossRef]
  12. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter," Phys. Rev. E 49, 1767-1770 (1994). [CrossRef]
  13. G. Jarry, E. Steimer, V. Damaschini, M. Epifanie, M. Jurczak, and R. Kaiser, "Coherence and polarization of light propagating through scattering media and biological tissues," Appl. Opt. 37, 7357-7367 (1998). [CrossRef]
  14. L. F. Rojas-Ochoa, D. Lacoste, R. Lenke, P. Schurtenberger, and F. Scheffold, "Depolarization of backscattered linearly polarized light," J. Opt. Soc. Am. A 21, 1799-1804 (2004). [CrossRef]
  15. M. Xu and R. R. Alfano, "Random walk of polarized light in turbid media," Phys. Rev. Lett. 95, 213901 (2005). [CrossRef] [PubMed]
  16. J. Ellis and A. Dogariu, "Discrimination of globally unpolarized fields through Stokes vector element correlations," J. Opt. Soc. Am. A 22, 491-496 (2005). [CrossRef]
  17. M. I. Mishchenko and J.W. Hovenier, "Depolarization of light backscattered by randomly oriented nonspherical particles," Opt. Lett. 20, 1356-1358 (1995). [CrossRef] [PubMed]
  18. J. M. Schmitt and S. H. Xiang, "Cross-polarized backscatter in optical coherence tomography of biological tissue," Opt. Lett. 23, 1060-1062 (1998). [CrossRef]
  19. J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, "Use of polarized-light to discriminate short-path photons in a multiply scattering medium," Appl. Opt. 31, 6535-6546 (1992). [CrossRef] [PubMed]
  20. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, "Imaging skin pathology with polarized light," J. Biomed. Opt. 7, 329-340 (2002). [CrossRef] [PubMed]
  21. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999). [CrossRef]
  22. Y. Liu, Y. L. Kim, X. Li, and V. Backman, "Investigation of depth selectivity of polarization gating for tissue characterization," Opt. Express 13, 601-611 (2005). [CrossRef] [PubMed]
  23. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992). [CrossRef]
  24. J. F. de Boer and T. E. Milner, "Review of polarization sensitive optical coherence tomography and Stokes vector determination," J. Biomed. Opt. 7, 359-371 (2002). [CrossRef] [PubMed]
  25. S. L. Jiao, G. Yao, and L. H. V. Wang, "Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography," Appl. Opt. 39, 6318-6324 (2000). [CrossRef]
  26. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.
  27. N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander, and T. E. Milner, "Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT)," Opt. Express 13, 4611-4628 (2005). [CrossRef] [PubMed]
  28. D. J. Maitland and J. T. Walsh, Jr., "Quantitative measurements of linear birefringence during heating of native collagen," Lasers Surg. Med. 20, 310-318 (1997). [CrossRef] [PubMed]
  29. M. J. Everett, K. Schoenenberger, B. W. Colston, Jr., and L. B. Da Silva, "Birefringence characterization of biological tissue by use of optical coherence tomography," Opt. Lett. 20, 228-230 (1998). [CrossRef]
  30. M. G. Ducros, J. D. Marsack, H. G. RylanderIII, S. L. Thomsen, and ThomasE. Milner, "Primate retina imaging with polarization-sensitive optical coherence tomography," J. Opt. Soc. Am. A 18, 2945-2956 (2001). [CrossRef]
  31. X. Wang and L. V. Wang, "Propagation of polarized light in birefringent turbid media: a Monte Carlo study," J. Biomed. Opt. 7, 279-290 (2002). [CrossRef] [PubMed]
  32. Y. Yang, L. Wu, Y. Feng, and R. K. Wang, "Observations of birefringence in tissues from optic-fibre-based optical coherence tomography," Meas. Sci. Technol. 14, 41-46 (2003). [CrossRef]
  33. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, "Real-time multi-functional optical coherence tomography," Opt. Express 11, 782-793 (2003). [CrossRef] [PubMed]
  34. J. W. Goodman, Speckle Phenomena in Optics (Roberts and Company, Englewood, Colorado, 2007).
  35. T. R. Hillman, S. G. Adie, V. Seemann, J. J. Armstrong, S. L. Jacques, and D. D. Sampson, "Correlation of static speckle with sample properties in optical coherence tomography," Opt. Lett. 31, 190-192 (2006). [CrossRef] [PubMed]
  36. N. J. Kemp, J. Park, H. N. Zaatari, H. G. Rylander, and T. E. Milner, "High-sensitivity determination of birefringence in turbid media with enhanced polarization-sensitive optical coherence tomography," J. Opt. Soc. Am. A 22, 552-560 (2005). [CrossRef]
  37. J. F. de Boer, T. E. Milner, and J. S. Nelson, "Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography," Opt. Lett. 24, 300-302 (1999). [CrossRef]
  38. A. V. Zvyagin, E. D. J. Smith, and D. D. Sampson, "Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry," J. Opt. Soc. Am. A 20, 333-341 (2003). [CrossRef]
  39. M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, "Femtosecond transillumination optical coherence tomography," Opt. Lett. 18, 950-952 (1993). [CrossRef] [PubMed]
  40. L. Thrane, H. T. Yura, and P. E. Andersen, "Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle," J. Opt. Soc. Am. A 17, 484-490 (2000). [CrossRef]
  41. P. Fleckman and C. Allan, "Surgical anatomy of the nail unit," Dermatol. Surg. 27, 257 (2001). [PubMed]
  42. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (6740 KB)     
» Media 2: MOV (7928 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited