OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 1 — Jan. 29, 2008

The effect of external forces on discrete motion within holographic optical tweezers

E. Eriksson, S. Keen, J. Leach, M. Goksör, and M. J. Padgett  »View Author Affiliations

Optics Express, Vol. 15, Issue 26, pp. 18268-18274 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1265 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Holographic optical tweezers is a widely used technique to manipulate the individual positions of optically trapped micron-sized particles in a sample. The trap positions are changed by updating the holographic image displayed on a spatial light modulator. The updating process takes a finite time, resulting in a temporary decrease of the intensity, and thus the stiffness, of the optical trap. We have investigated this change in trap stiffness during the updating process by studying the motion of an optically trapped particle in a fluid flow. We found a highly nonlinear behavior of the change in trap stiffness vs. changes in step size. For step sizes up to approximately 300 nm the trap stiffness is decreasing. Above 300 nm the change in trap stiffness remains constant for all step sizes up to one particle radius. This information is crucial for optical force measurements using holographic optical tweezers.

© 2007 Optical Society of America

OCIS Codes
(090.2890) Holography : Holographic optical elements
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation

ToC Category:

Original Manuscript: October 8, 2007
Revised Manuscript: December 14, 2007
Manuscript Accepted: December 14, 2007
Published: December 20, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

E. Eriksson, S. Keen, J. Leach, M. Goksör, and M. J. Padgett, "The effect of external forces on discrete motion within holographic optical tweezers," Opt. Express 15, 18268-18274 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  2. J. E. Molloy and M. J. Padgett, "Lights, action: optical tweezers," Contemp. Phys. 43, 241-258 (2002). [CrossRef]
  3. D. McGloin, "Optical tweezers: 20 years on," Philos. Trans. R. Soc. London, Ser. A 364, 3521-3537 (2006). [CrossRef]
  4. K. Svoboda and S. M. Block, "Biological applications of optical forces," Annu. Rev. Biophys. Biomol. Struct.  23, 247-285 (1994). [CrossRef]
  5. R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, "Quantitative measurements of force and displacement using an optical trap," Biophys. J. 70, 1813-1822 (1996). [CrossRef] [PubMed]
  6. J. C. Meiners and S. R. Quake, "Femtonewton force spectroscopy of single extended DNA molecules," Phys. Rev. Lett. 84, 5014-5017 (2000). [CrossRef] [PubMed]
  7. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77-82 (2000). [CrossRef]
  8. J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002). [CrossRef]
  9. P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab Chip 5, 1224-1228 (2005). [CrossRef] [PubMed]
  10. G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laserguided assembly of heterotypic three-dimensional living cell microarrays," Biophys. J. 91, 3465-3473 (2006). [CrossRef] [PubMed]
  11. R. Di Leonardo, J. Leach, H. Mushfique, J. M. Cooper, G. Ruocco, and M. J. Padgett, "Multipoint holographic optical velocimetry in microfluidic systems," Phys. Rev. Lett. 96, 134502 (2006). [CrossRef] [PubMed]
  12. E. Eriksson, J. Enger, B. Nordlander, N. Erjavec, K. Ramser, M. Goksor, S. Hohmann, T. Nystrom, and D. Hanstorp, "A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes," Lab Chip 7, 71-76 (2007). [CrossRef]
  13. E. Eriksson, J. Scrimgeour, J. Enger, andM. Goksor, "Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes," Proc. SPIE 6592, 65920P-9 (2007). [CrossRef]
  14. M. Reicherter, S. Zwick, T. Haist, C. Kohler, H. Tiziani, and W. Osten, "Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers," Appl. Opt. 45, 888-896 (2006). [CrossRef] [PubMed]
  15. C. H. J. Schmitz, J. P. Spatz, and J. E. Curtis, "High-precision steering of multiple holographic optical traps," Opt. Express 13, 8678-8685 (2005). [CrossRef] [PubMed]
  16. S. Keen, J. Leach, G. Gibson, and M. Padgett, "Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers," J. Opt. A-Pure Appl. Opt. 9, S264-S266 (2007). [CrossRef]
  17. A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited