OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 1 — Jan. 29, 2008

Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm

Xiaolei Song, Daifa Wang, Nanguang Chen, Jing Bai, and Hongkai Wang  »View Author Affiliations


Optics Express, Vol. 15, Issue 26, pp. 18300-18317 (2007)
http://dx.doi.org/10.1364/OE.15.018300


View Full Text Article

Enhanced HTML    Acrobat PDF (642 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

With the development of in-vivo free-space fluorescence molecular imaging and multi-modality imaging for small animals, there is a need for new reconstruction methods for real animal-shape models with a large dataset. In this paper we are reporting a novel hybrid adaptive finite element algorithm for fluorescence tomography reconstruction, based on a linear scheme. Two different inversion strategies (Conjugate Gradient and Landweber iterations) are separately applied to the first mesh level and the succeeding levels. The new algorithm was validated by numerical simulations of a 3-D mouse atlas, based on the latest free-space setup of fluorescence tomography with 360° geometry projections. The reconstructed results suggest that we are able to achieve high computational efficiency and spatial resolution for models with irregular shape and inhomogeneous optical properties.

© 2007 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5280) Medical optics and biotechnology : Photon migration
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: October 24, 2007
Revised Manuscript: December 3, 2007
Manuscript Accepted: December 17, 2007
Published: December 20, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Xiaolei Song, Daifa Wang, Nanguang Chen, Jing Bai, and Hongkai Wang, "Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm," Opt. Express 15, 18300-18317 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-26-18300


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nature Biotechnol. 23, 313-320 (2005). [CrossRef] [PubMed]
  2. V. Ntziachristos, "Fluorescence molecular imaging," Annu. Rev. Biomed. Eng. 8, 1-33 (2006). [CrossRef] [PubMed]
  3. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996). [CrossRef] [PubMed]
  4. J. Chang, H. L. Graber, and R. L. Barbour, "Luminescence optical tomography of dense scattering media," J. Opt. Soc. Am. A 14, 288-299 (1997). [CrossRef] [PubMed]
  5. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003). [CrossRef] [PubMed]
  6. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, "Free-space fluorescence molecular tomography utilizing 360° geometry projections," Opt. Lett. 32, 382-384 (2007). [CrossRef] [PubMed]
  7. H. Meyer, A. Garofalakis, G. Zacharakis, S. Psycharakis, C. Mamalaki, D. Kioussis, E. N. Economou, V. Ntziachristos, and J. Ripoll, "Noncontact optical imaging in mice with full angular coverage and automatic surface extraction," Appl. Opt. 46, 3617-3627 (2007). [CrossRef] [PubMed]
  8. X. Gu, Y. Xu, and H. Jiang, "Mesh-based enhancement schemes in diffuse optical tomography," Med. Phys. 30, 861-869 (2003). [CrossRef] [PubMed]
  9. A. Joshi, W. Bangerth, and E.M. Sevick-Muraca, "Adaptive finite element based tomography for fluorescence optical imaging in tissue," Opt. Express 12, 5402-5417 (2004). [CrossRef] [PubMed]
  10. J. H. Lee, A. Joshi, and E. M. Sevick-Muraca, "Fully adaptive finite element based tomography using tetrahedral dual-meshing for fluorescence enhanced optical imaging in tissue," Opt. Express 15, 6955-6975 (2007). [CrossRef] [PubMed]
  11. D. Wang, X. Song, and J. Bai, "A novel adaptive mesh based algorithm for fluorescence molecular tomography using analytical solution," Opt. Express 15,9722-9730 (2007). [CrossRef] [PubMed]
  12. R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurements," IEEE Trans. Med. Imaging 23, 492-500 (2004). [CrossRef] [PubMed]
  13. R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Noncontact optical tomography of turbid media," Opt. Lett. 28, 1701-1703 (2003). [CrossRef] [PubMed]
  14. D. Hyde, A. Soubret, J. Dunham, T. Lasser, E. Miller, D. Brooks, and V. Ntziachristos, "Analysis of reconstructions in full view fluorescence molecular tomography," Proc. SPIE 6498, 649803 (2007). [CrossRef]
  15. X. Li, B. Chance, and A. G. Yodh, "Fluorescent heterogeneities in turbid media: limits for detection, characterization, and comparison with absorption," Appl. Opt. 37, 6833-6844 (1998). [CrossRef]
  16. A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities:study of the normalized born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005). [CrossRef] [PubMed]
  17. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003). [CrossRef] [PubMed]
  18. S. Srinivasan, B. W. Pogue, S. Davis, and F. Leblond, "Improved quantification of fluorescence in 3-D in a realistic mouse phantom," Proc. SPIE 6434, 64340S (2007). [CrossRef]
  19. S.  Bjoern, S. V.  Patwardhan, and J. P.  Culver, "The influence of Heterogeneous optical properties upon fluorescence diffusion Tomography of small animals," Springer Proc. in Physics 114, 361-365 (2007). [CrossRef]
  20. B. Brooksby, B.W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, J. Weaver, S.P. Poplack, and K. D. Paulsen, "Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. 103, 8828-8833 (2006). [CrossRef]
  21. Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt. 10, 024033 (2005). [CrossRef] [PubMed]
  22. Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, "Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005). [CrossRef] [PubMed]
  23. H. Jiang, "Frequency-domain fluorescent diffusion tomography: a finite element based algorithm and simulations," Appl. Opt. 37, 5337-5343 (1998). [CrossRef]
  24. A. Cong and G. Wang, "A finite-element-based reconstruction method for 3D fluorescence tomography," Opt. Express 13, 9847-9857 (2005). [CrossRef] [PubMed]
  25. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995). [CrossRef] [PubMed]
  26. S. S. Rao, The Finite Element Method in Engineering, (Butterworth-Heinemann, Boston, 1999).
  27. W. Bangerth, "Adaptive finite element methods for the identification of distributed parameters in partial differential equations," Ph.D. thesis, University of Heidelberg (2002).
  28. M. Hanke and P. C. Hansen, "Regularization methods for large-scale problems," Surv. Math. Ind. 3, 253-315 (1993).
  29. P. C. Hansen, "Analysis of Discrete ill-posed problems by means of the L-curve," SIAM Rev. 34, 561-580 (1992). [CrossRef]
  30. L. Landweber, "An iteration formula for Fredholm integaral equations of the first kind," Am. J. Math. 73, 615-624 (1951). [CrossRef]
  31. G. A. Latham, "Best L2 Tikhonov Analogue for Landweber Iteration," Inverse Probl. 14, 1527-1537 (1998) [CrossRef]
  32. B. Dogdas, D. Stout, A. Chatziioannou, and R. M. Leahy, "Digimouse: A 3D whole body mouse atlas from CT and cryosection data," Phys. Med. Biol. 52,577-587 (2007). [CrossRef] [PubMed]
  33. D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, "Creating a whole body digital mouse atlas with PET, CT and cryosection images," Mol. Imaging Biol. 4, S27 (2002).
  34. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005). [CrossRef] [PubMed]
  35. T. Lasser and V. Ntziachristos, "Optimization of 360o projection fluorescence molecular tomography," Med. Image Anal. 11, 389-399 (2007). [CrossRef] [PubMed]
  36. W. Q. Yang, D. M. Spink, T. A. York, and H. McCann, "An image-reconstruction algorithm based on Landweber’s iteration method for electrical-capacitance tomography," Meas. Sci. Technol. 10, 1065-1069 (1999). [CrossRef]
  37. L. H. Peng, G. Lu, and W. Q. Yang, "Image reconstruction algorithms for electrical capacitance tomography: state of the art," J. Tsinghua Univ. Meas. Sci. Technol. 44, 478-484 (2004).
  38. S. C. Davis, B. W. Pogue, H. Dehghani, and K. D. Paulsen, "Contrast-detail analysis characterizing diffuse optical fluorescence tomography image reconstruction," J. Biomed. Opt. 10, 050501-1:3 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited