OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 3 — Mar. 7, 2007

Improved scheme for accurate computation of high electric near-field gradients

Thomas Grosges, Houman Borouchaki, and Dominique Barchiesi  »View Author Affiliations

Optics Express, Vol. 15, Issue 3, pp. 1307-1321 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (883 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an improved adaptive mesh process that allows the accurate control of the numerical solution of interest derived from the solution of the partial differential equation. In the cases of two-dimensional studies, such an adaptive meshing is applied to compute phenomenon involving high field gradients in near-field (electric intensity, Poynting’s vector, optical forces,…). We show, that this improved scheme permits to decrease drastically the computationnal time and the memory requirements.

© 2007 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(260.2110) Physical optics : Electromagnetic optics
(290.4020) Scattering : Mie theory

ToC Category:
Physical Optics

Original Manuscript: November 9, 2006
Revised Manuscript: January 8, 2007
Manuscript Accepted: January 8, 2007
Published: February 5, 2007

Virtual Issues
Vol. 2, Iss. 3 Virtual Journal for Biomedical Optics

Thomas Grosges, Houman Borouchaki, and Dominique Barchiesi, "Improved scheme for accurate computation of high electric near-field gradients," Opt. Express 15, 1307-1321 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. P. Kottmann and O. J. F. Martin, "Accurate solution of the volume integral equation for high-permittivity scatterers," IEEE Trans. Antennas Propag. 48, 1719-1726 (2000). [CrossRef]
  2. D. Barchiesi, B. Guizal and T. Grosges, "Accuracy of local field enhancement models: toward predictive models?" Appl. Phys. B,  84, 55-60 (2006). [CrossRef]
  3. D. Barchiesi, C. Girard, O. J. F. Martin, D. Van Labeke and D. Courjon, "Computing the optical near-field distributions around complex subwavelength surface structures: A comparative study of different methods," Phys. Rev. E 54, 4285-4292 (1996). [CrossRef]
  4. B. Guizal, D. Barchiesi and D. Felbacq, "Electromagnetic beam diffraction by a finite lamellar structure," J. Opt. Soc. Am. A 20, 2274-2280 (2003). [CrossRef]
  5. T. Grosges, A. Vial and D. Barchiesi, "Models of near-field spectroscopic studies: comparison between Finite-Element and Finite-Difference methods," Opt. Express 13, 8483-8497 (2005). [CrossRef] [PubMed]
  6. M. Born, and E. Wolf, Principle of Optics (Pergamon Press, Oxford, 1993).
  7. J. Jin, The Finite Element Method in Electromagnetics (John Wiley and Sons, New York, 1993).
  8. P. Ingelström and A. Bondeson, "Goal-oriented error estimation and h-adaptivity for Maxwell’s equations," Comput. Methods Appl. Mech. Eng. 192, 2597-2616 (2003). [CrossRef]
  9. P. Houston, I. Perugia, and D. Schotzau, "Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator," Comput. Methods Appl. Mech. Eng. 194, 499-510 (2005). [CrossRef]
  10. D. Pardo, L. Demkowicz, C. Torre-Verdìn and L. Tabarovsky, "A goal-oriented hp-adaptive nite element method with electromagnetic applications. Part I: Electrostatics," Int. J. Numer. Methods Eng. 65, 1269-1309 (2005). [CrossRef]
  11. D. Xue and L. Demkowicz, "Modeling of electromagnetic absorption/scattering problems on curvilinear geometries using hp finite/infinite element method," Finite Elem. Anal. Design 42, 570-579 (2006). [CrossRef]
  12. H. Borouchaki, P. Lang, A. Cherouat and K. Saanouni, "Adaptive remeshing in large plastic strain with damage," Int. J. Numer. Methods Eng. 63, 1-36 (2005). [CrossRef]
  13. M. Berzins, "Mesh quality: a function of geometry, error estimates or both?" Eng. Comput. 15, 236-247 (1999). [CrossRef]
  14. M. Ainsworth and J. T. Oden, "A posteriori error estimation in finite element analysis," Comput. Methods Appl. Mech. Eng. 142, 1-88 (1997). [CrossRef]
  15. R. Radovitzky and M. Ortiz, "Error estimation and adaptive meshing in strongly non-linear dynamic problems," Comput. Methods Appl. Mech. Eng. 172, 203-240 (1999). [CrossRef]
  16. P. Laug and H. Borouchaki, "BL2D-V2: mailleur bidimensionnel adaptatif," Report INRIA RT-0275http://www-rocq1.inria.fr/gamma/cdrom/www/bl2d-v2/INDEX.html (2003).
  17. G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Ann. Phys. 25, 377-445 (1908). [CrossRef]
  18. H. Du, "Mie-scattering calculation," Appl. Opt. 43, 1951-1956 (2004). [CrossRef] [PubMed]
  19. C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, "Femtosecond light transmission and subradiant damping in Plasmonic Crystals," Phys. Rev. Lett. 94, 113901-4 (2005). [CrossRef] [PubMed]
  20. T. A. Davis and I. S. Duff, "A combined unifrontal multifrontal method for unsymmetric sparse matrices," ACM Trans.Math Softw. 25, 1-20 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited