OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 3 — Mar. 7, 2007

Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system

Adrian Mariampillai, Beau A. Standish, Nigel R. Munce, Cristina Randall, George Liu, James Y. Jiang, Alex E. Cable, I. Alex Vitkin, and Victor X.D. Yang  »View Author Affiliations


Optics Express, Vol. 15, Issue 4, pp. 1627-1638 (2007)
http://dx.doi.org/10.1364/OE.15.001627


View Full Text Article

Enhanced HTML    Acrobat PDF (5958 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a Doppler optical cardiogram gating technique for increasing the effective frame rate of Doppler optical coherence tomography (DOCT) when imaging periodic motion as found in the cardiovascular system of embryos. This was accomplished with a Thorlabs swept-source DOCT system that simultaneously acquired and displayed structural and Doppler images at 12 frames per second (fps). The gating technique allowed for ultra-high speed visualization of the blood flow pattern in the developing hearts of African clawed frog embryos (Xenopus laevis) at up to 1000 fps. In addition, four-dimensional (three spatial dimensions + temporal) Doppler imaging at 45 fps was demonstrated using this gating technique, producing detailed visualization of the complex cardiac motion and hemodynamics in a beating heart.

© 2007 Optical Society of America

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(110.4500) Imaging systems : Optical coherence tomography
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: November 27, 2006
Revised Manuscript: January 24, 2007
Manuscript Accepted: January 24, 2007
Published: February 19, 2007

Virtual Issues
Vol. 2, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Adrian Mariampillai, Beau A. Standish, Nigel R. Munce, Cristina Randall, George Liu, James Y. Jiang, Alex E. Cable, I. A. Vitkin, and Victor X. D. Yang, "Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system," Opt. Express 15, 1627-1638 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-4-1627


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Choma, S. D. Izatt, R. J. Wessells, R. Bodmer, and J. A. Izatt, "Images in cardiovascular medicine: in vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography," Circulation. 114, e35-e36 (2006). [CrossRef] [PubMed]
  2. S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brenzinski, and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. 94, 4256-4261 (1997). [CrossRef] [PubMed]
  3. S. Yazdanfar, M. Kulkarni, and J. Izatt, "High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography," Opt. Express 1, 424-431 (1997). [CrossRef] [PubMed]
  4. V. XD. Yang, M. Gordon, E. Seng-Yue, S. Lo, B. Qi, J. Pekar, A. Mok, B. Wilson, and I. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis," Opt. Express 11, 1650-1658 (2003). [CrossRef] [PubMed]
  5. S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Berzinski and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. USA. 94, 4256-4261 (1997). [CrossRef] [PubMed]
  6. T. Mesud Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby and J. A. Izatt, "A new high-resolution imaging technology to study cardiac development in chick embryos," Circulation. 106, 2771 (2002). [CrossRef] [PubMed]
  7. M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, "4D embryonic cardiography using gated optical coherence tomography," Opt. Express 14, 736-748 (2006). [CrossRef] [PubMed]
  8. D. L. Marks, T. S. Ralston, and S. A. Boppart, "Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system," J. Biomed. Opt. Special Issue on Cardiovascular Photonics,  11, 021014 (2006).
  9. S. Yazdanfar, A. M. Rollins and J. A. Izatt, "Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography," Opt. Lett. 251448-1450 (2000). [CrossRef]
  10. Z. P. Chen, T. E. Milner, D. Dave and J. S. Nelson, "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 2264-66 (1997). [CrossRef] [PubMed]
  11. A. W. Schaefer, J. J. Reynolds, D. L. Marks, and S. A. Boppart, "Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography," IEEE Trans. Biomed. Eng. 51186-190, (2004). [CrossRef] [PubMed]
  12. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005). [CrossRef] [PubMed]
  13. R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006). [CrossRef] [PubMed]
  14. V. XD. Yang, M. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. Wilson, and I. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance," Opt. Express 11, 794-809 (2003). [CrossRef] [PubMed]
  15. V. X. D. Yang, N. Munce, J. Pekar, M. L. Gordon, S. Lo, N. E. Marcon, B. C. Wilson and I. A. Vitkin, "Micromachined array tip for multifocus fiber-based optical coherence tomography," Opt. Lett. 29,1754-1756 (2004). [CrossRef] [PubMed]
  16. E. Cherin, R. Williams, A. Needles, G. Liu, C. White, A. S. Brown, Y-Q. Zhou and F. S. Foster, "Ultrahigh frame rate retrospective ultrasound microimaging and blood flow visualization in mice in vivo," Ultrasound Med Biol. 32, 683-691 (2006). [CrossRef] [PubMed]
  17. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523-10538 (2005). [CrossRef] [PubMed]
  18. W. A. Reed, M. F. Yan, and M. J. Schnitzer, "Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry," Opt. Lett. 27, 1794-1796 (2002). [CrossRef]
  19. H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, "Feasibility of Interstitial Doppler Optical Coherence Tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006). [CrossRef] [PubMed]
  20. C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, "Real-time two-dimensional blood flow imaging using an autocorrelation technique," IEEE Trans. Sonics. Ultrason. 32458-464 (1985). [CrossRef]
  21. M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  22. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 282067-2069 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (219 KB)     
» Media 2: MOV (448 KB)     
» Media 3: MOV (1792 KB)     
» Media 4: MOV (1892 KB)     
» Media 5: MOV (9818 KB)     
» Media 6: MOV (12123 KB)     
» Media 7: MOV (1342 KB)     
» Media 8: MOV (1780 KB)     
» Media 9: MOV (1361 KB)     
» Media 10: MOV (1370 KB)     
» Media 11: MOV (1801 KB)     
» Media 12: MOV (14908 KB)     
» Media 13: MOV (12810 KB)     
» Media 14: MOV (3839 KB)     
» Media 15: MOV (1808 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited