OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 5 — May. 17, 2007

Fluidic fibre dye lasers

A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel  »View Author Affiliations


Optics Express, Vol. 15, Issue 7, pp. 3962-3967 (2007)
http://dx.doi.org/10.1364/OE.15.003962


View Full Text Article

Enhanced HTML    Acrobat PDF (631 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the demonstration of compact fluidic fibre lasers based on capillary tubes and photonic crystal fibres, featuring single channel and multiple laterally integrated fluidic lasers respectively. Their preparation was based on capillary action and lasing occurred without the need for external mirrors or lithographically defined microstructures. The fibre lasers were found to be tunable by varying the chromophore density in the liquid core and a functional wavelength selectivity mechanism inherent in both types of lasers provided a long free spectral range that does not correspond to the length of the fibres. The enhanced mode spacing is attributed to a Vernier resonant effect.

© 2007 Optical Society of America

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4780) Lasers and laser optics : Optical resonators
(230.3990) Optical devices : Micro-optical devices
(230.7370) Optical devices : Waveguides

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 22, 2007
Revised Manuscript: March 9, 2007
Manuscript Accepted: March 10, 2007
Published: April 2, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Citation
A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel, "Fluidic fibre dye lasers," Opt. Express 15, 3962-3967 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-7-3962


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Psaltis, S. R. Quake, C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006). [CrossRef] [PubMed]
  2. D.-Y. Zhang, N. Justis, Y.-H. Lo, "Fluidic adaptive lens of transformable lens type," Appl. Phys. Lett. 84, 4194-4196 (2004). [CrossRef]
  3. S.C.-McGreehin, T. F. Krauss, K. Dholakia, "Integrated monolithic optical manipulation," Lab on a Chip 6, 1122-1124 (2006). [CrossRef]
  4. P. Mach, M. Dolinski, K. W. Baldwin, J. A. Rogers, C. Kerbage, R. S. Windeler, B. J. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002). [CrossRef]
  5. D. Erickson, T. Rockwood, T. Emery, A. Scherer, D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006). [CrossRef] [PubMed]
  6. Y. Xia, G. M. Whitesides, "Soft lithography," Angew. Chem. Int. Ed. 37, 550-575 (1998). [CrossRef]
  7. S. R. Quake and A. Scherer, "From micro- to nanofabrication with soft materials," Science 290, 1536-1540 (2000). [CrossRef] [PubMed]
  8. Z. Li, Z. Zhang, A. Scherer, D. Psaltis, "Mechanically tunable optofluidic distributed feedback dye laser," Opt. Express 14, 10494-10499 (2006). [CrossRef] [PubMed]
  9. M. Gersborg-Hansen, A. Kristensen, "Tunability of optofluidic distributed feedback dye lasers," Opt. Express 15, 137-142 (2007). [CrossRef] [PubMed]
  10. T. Kobayashi and W. J. Blau, "Laser emission from conjugated polymer in fibre waveguide structure," Electron. Lett. 38, 67-68 (2002). [CrossRef]
  11. D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi, "A low-threshold, high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 127, 8952-8953 (2005). [CrossRef] [PubMed]
  12. P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  13. P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. Martijn de Sterke, B. J. Eggleton, "Long wavelength anti-resonant guidance in high index inclusion microstructured fibers," Opt. Express 12, 5424-5433 (2004). [CrossRef] [PubMed]
  14. B. Helbo, S. Kragh, B. G. Kjeldsen, J. L. Reimers, A. Kristensen, "Investigation of the dye concentration influence on the lasing wavelength and threshold for a micro-fluidic dye laser," Sens. Actuators A 111, 21-25 (2004). [CrossRef]
  15. H. G. Danielmeyer, "Effects of drift and diffusion of excited states on spatial hole burning and laser oscillation," J. Appl. Phys. 42, 3125-3132 (1971). [CrossRef]
  16. S. Yokoyama, T. Nakahama, S. Mashiko, "Amplified spontaneous emission and laser emission from a high optical-gain medium of dye-doped dendrimer," J. Luminescence 111, 285-290 (2005). [CrossRef]
  17. D. Ouyang, R. Heitz, N. N. Ledenstov, S. Bognar, R. L. Sellin, Ch. Ribbat, D. Bimberg, "Lateral-cavity spectral hole burning in quantum dot lasers," App. Phys. Lett. 81, 1546-1548 (2002). [CrossRef]
  18. E. P. O'Reilly, A. I. Onischenko, E. A. Avrutin, D. Bhattacharyya, J. H. Marsh, "Longitudinal mode grouping in InGaAs/GaAs/AlGaAs quantum dot lasers: origin and means of control," Electron. Lett. 34, 2035-2037 (1998). [CrossRef]
  19. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, "Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers," Phys. Rev. B 61, 7595-7603 (2000). [CrossRef]
  20. M. Horowitz, R. Daisy, B. Fischer, J. L. Zyskind, "Linewidth-narrowing mechanism in lasers by nonlinear wave mixing," Opt. Lett. 19, 1406-1408 (1994). [CrossRef] [PubMed]
  21. R. C. Polson, G. Levina, Z. V. Vardeny, "Spectral analysis of polymer microring lasers," Appl. Phys. Lett. 76, 3858-3860 (2000). [CrossRef]
  22. Y.H. Ja, "Optical Vernier filter with fibre grating Fabry-Perot resonators," Appl. Opt. 346164-6167 (1995). [CrossRef] [PubMed]
  23. A.J. Poustie, N. Finlayson, P. Harper, "Multiwavelength fiber laser using spatial mode beating filter," Opt. Lett. 19, 716-718 (1994). [CrossRef] [PubMed]
  24. L. M. Blinov, G. Cipparrone, P. Pagliusi, V. V. Lazarev, S. P. Palto, "Mirrorless lasing from nematic liquid crystals in the plane waveguide geometry without refractive index or gain modulation," Appl. Phys. Lett. 89, 031114 1-3 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited