OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 5 — May. 17, 2007

Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization

Scott C. Davis, Hamid Dehghani, Jia Wang, Shudong Jiang, Brian W. Pogue, and Keith D. Paulsen  »View Author Affiliations


Optics Express, Vol. 15, Issue 7, pp. 4066-4082 (2007)
http://dx.doi.org/10.1364/OE.15.004066


View Full Text Article

Enhanced HTML    Acrobat PDF (1563 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A promising method to incorporate tissue structural information into the reconstruction of diffusion-based fluorescence imaging is introduced. The method regularizes the inversion problem with a Laplacian-type matrix, which inherently smoothes pre-defined tissue, but allows discontinuities between adjacent regions. The technique is most appropriately used when fluorescence tomography is combined with structural imaging systems. Phantom and simulation studies were used to illustrate significant improvements in quantitative imaging and linearity of response with the new algorithm. Images of an inclusion containing the fluorophore Lutetium Texaphyrin (Lutex) embedded in a cylindrical phantom are more accurate than in situations where no structural information is available, and edge artifacts which are normally prevalent were almost entirely suppressed. Most importantly, spatial priors provided a higher degree of sensitivity and accuracy to fluorophore concentration, though both techniques suffer from image bias caused by excitation signal leakage. The use of spatial priors becomes essential for accurate recovery of fluorophore distributions in complex tissue volumes. Simulation studies revealed an inability of the “no-priors” imaging algorithm to recover Lutex fluorescence yield in domains derived from T1 weighted images of a human breast. The same domains were reconstructed accurately to within 75% of the true values using prior knowledge of the internal tissue structure. This algorithmic approach will be implemented in an MR-coupled fluorescence spectroscopic tomography system, using the MR images for the structural template and the fluorescence data for region quantification.

© 2007 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: January 4, 2007
Revised Manuscript: February 22, 2007
Manuscript Accepted: March 13, 2007
Published: April 2, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Scott C. Davis, Hamid Dehghani, Jia Wang, Shudong Jiang, Brian W. Pogue, and Keith D. Paulsen, "Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization," Opt. Express 15, 4066-4082 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-7-4066


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, "Imaging of fluorescent yeild and lifetime from multiply scattered light reemitted from random media," Appl. Opt. 36, 2260-2272 (1997). [CrossRef] [PubMed]
  2. H. B. Jiang, "Frequency-domain fluorescent diffusion tomography: a finite- element-based algorithm and simulations," Appl. Opt. 37, 5337-5343 (1998). [CrossRef]
  3. D. J. Hawrysz, and E. M. Sevick-Muraca, "Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents," Neoplasia 2, 388-417 (2000). [CrossRef]
  4. M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography," Proc. Natl. Acad. Sci. USA 99, 9619-9624 (2002). [CrossRef] [PubMed]
  5. A. B. Milstein, O. Seungseok, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomograhy," Appl. Opt. 42, 3081-3094 (2003). [CrossRef] [PubMed]
  6. V. Ntziachristos, and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation," Opt. Lett. 26, 893-895 (2001). [CrossRef]
  7. V. Ntziachristos, and R. Weissleder, "Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media," Med. Phys. 29, 803-809 (2002). [CrossRef] [PubMed]
  8. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003). [CrossRef] [PubMed]
  9. A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, "Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies," J. Biomed. Opt. 9, 488-496 (2004). [CrossRef] [PubMed]
  10. R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissue with noncontact measurements," IEEE Trans. Med. Imaging 23, 492-500 (2004). [CrossRef] [PubMed]
  11. S. V. Patwardhan, S. R. Bloch, S. Achilefu, and J. P. Culver, "Time-dependent whole-body fluorescence tomography of probe bio-distribution in mice," Opt. Exp. 13, 2564-2577 (2005). [CrossRef]
  12. A. Godavarty, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, "Detection of single and multiple targets in tissue phantoms with fluorescence-enhanced optical imaging: feasibility study," Radiol. 235, 148-154 (2005). [CrossRef]
  13. B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W. Pogue, and K. D. Paulsen, "Magnetic resonance-guided near-infrared tomography of the breast," Rev. Sci. Instrum. 75, 5262-5270 (2004). [CrossRef]
  14. X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, "Diffuse Optical tomography with physiological and spatial a priori constraints," Phys. Med. Biol. 49, N155-N163 (2004).</jrn> [CrossRef] [PubMed]
  15. M. Guven, B. Yazici, X. Intes, and B. Chance, "Diffuse optical tomography with a priori anatomical information," Phys. Med. Biol. 50, 2837-2858 (2005). [CrossRef] [PubMed]
  16. P. K. Yalavarthy, H. Dehghani, B. W. Pogue, C. M. Carpenter, H. B. Jiang, and K. D. Paulsen, "Structural information within regularization matrices improves near infrared diffuse optical tomography," IEEE Trans. Med. Imaging In review (2006).</other>
  17. G. Kostenich, A. Orenstein, L. Roitman, Z. Malik, and B. Ehrenberg, "In vivo photodynamic therapy with the new near-IR absorbing water soluble photosensitizer lutetium texaphyrin and a high intensity pulsed light delivery system," Photochem. & Photobiol. 39, 36-42 (1997). [CrossRef]
  18. K. W. Woodburn, Q. Fan, D. R. Miles, D. Kessel, Y. Luo, and S. W. Young, "Localization and efficacy analysis of the phototherapeutic lutetium texaphyrin (PCI-0123) in the murine EMT6 sarcoma model," Photochem. & Photobiol. 65, 410-415 (1997). [CrossRef] [PubMed]
  19. M. Zellweger, A. Radu, P. Monnier, H. van den Bergh, and G. Wagnieres, "Fluorescence pharmacokinetics of Lutetium Texaphyrin (PCI-0123, Lu-Tex) in the skin and in healthy and tumoral hamster cheek-pouch mucosa," Photochem. & Photobiol. B 55, 56-62 (2000). [CrossRef]
  20. A. Synytsya, V. Kral, P. Matejka, P. Pouckova, K. Volka, and J. L. Sessler, "Biodistribution assessment of a lutetium(III) texaphyrin analogue in tumor-bearing mice using NIR Fourier-transform Raman spectroscopy," Photochem. & Photobiol. 79, 453-460 (2004). [CrossRef] [PubMed]
  21. H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and P. K. D., "The effects of internal refractive index variation in near infrared optical tomography: A finite element modeling approach," Phys. Med. Biol. 48, 2713-2727 (2003). [CrossRef] [PubMed]
  22. S. R. Arridge, M. Schweiger, M. Hiraoka and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993). [CrossRef] [PubMed]
  23. K. D. Paulsen, and JiangH. , "Spatially varying optical property reconstruction using a finite element diffusion equation approximation," Med. Phys. 22, 691-701 (1995). [CrossRef] [PubMed]
  24. S. R. Arridge, and M. Schweiger, "Photon-measurement density functions. Part2: Finite-element-method calculations," Appl. Opt. 34, 8026-8037 (1995). [CrossRef] [PubMed]
  25. A. Borsic, W. R. B. Lionheart, and C. N. McLeod, "Generation of anisotropic-smoothness regularization filters for EIT," IEEE Trans. Med. Imaging 21, 579-587 (2002). [CrossRef] [PubMed]
  26. B. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, "Near infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities," IEEE J. STQE 9, 199-209 (2003).
  27. K. D. Paulsen, Jiang, H. , "Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization," Appl. Opt. 35, 3447-3458 (1996). [CrossRef] [PubMed]
  28. K. D. Paulsen, P. Meaney, M. Moskowitz, and J. Sullican, Jr., "A dual mesh for finite element based reconstruction algorithms," IEEE Trans. Med. Imaging 14, 504-514 (1995). [CrossRef] [PubMed]
  29. M. Schweiger, and S. R. Arridge, "Optical tomographic reconstruction in a complex head model using a priori boundary information," Phys. Med. Biol. 44, 2703-2722 (1999). [CrossRef] [PubMed]
  30. B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, "Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. USA 103, 8828-8833 (2006). [CrossRef] [PubMed]
  31. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction," Acad. Radiol. 13, 195-202 (2006). [CrossRef] [PubMed]
  32. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, and S. P. Poplack, "Initial studies of in vivo absorbing and scattering heterogeneity in near-infrared tomographic breast imaging," Opt. Lett. 26, 822-824 (2001). [CrossRef]
  33. B. W. Pogue, McBride, T. O. , Prewitt, J. , Osterberg, U. L. , Paulsen, K. D. , "Spatially variant regularization improves diffuse optical tomography," Appl. Opt. 38, 2950-2961 (1999). [CrossRef]
  34. S. Jiang, B. W. Pogue, T. O. McBride, and K. D. Paulsen, "Quantitative analysis of near-infrared tomography: sensitivity to the tissue-simulating precalibration phantom," J. Biomed. Opt. 8, 308-315 (2003). [CrossRef] [PubMed]
  35. B. Pogue, and M. Patterson, "Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt. 11, 0411021-04110216 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited