OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 5 — May. 17, 2007

Heterodyne apertureless near-field scanning optical microscopy on periodic gold nanowells

Jeffrey E. Hall, Gary P. Wiederrecht, Stephen K. Gray, Shih-Hui Chang, Seokwoo Jeon, John A. Rogers, Renaud Bachelot, and Pascal Royer  »View Author Affiliations

Optics Express, Vol. 15, Issue 7, pp. 4098-4105 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (857 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Heterodyne detection for apertureless near-field scanning optical microscopy was used to study periodic gold nanowell arrays. Optical near-field amplitude and phase signals were obtained simultaneously with the topography of the gold nanowells and with different polarizations. Theoretical calculations of the near-fields were consistent with the experiments; in particular, the calculated amplitudes were in especially good agreement. The heterodyne method is shown to be particularly effective for these types of periodic photonic structures and other highly scattering media, which can overwhelm the near-field scattered signal when conventional apertureless near-field scanning optical microscopy is used.

© 2007 Optical Society of America

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(240.0310) Optics at surfaces : Thin films

ToC Category:

Original Manuscript: December 12, 2006
Revised Manuscript: February 9, 2007
Manuscript Accepted: February 10, 2007
Published: April 2, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Jeffrey E. Hall, Gary P. Wiederrecht, Stephen K. Gray, Shih-Hui Chang, Seokwoo Jeon, John A. Rogers, Renaud Bachelot, and Pascal Royer, "Heterodyne apertureless near-field scanning optical microscopy on periodic gold nanowells," Opt. Express 15, 4098-4105 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Brockman, B. P. Nelson and R. M. Corn, "Surface plasmon resonance imaging measurements of Ultrathin Organic Films," Annu. Rev. Phys. Chem. 51, 41-63 (2000). [CrossRef] [PubMed]
  2. E. Hutter and J. Fendler, "Exploitation of Localized Surface Plasmon Resonance," Adv. Mater. 16, 1685-1706 (2004). [CrossRef]
  3. J. Kim, J. H. Kim and K. H. Park, "Local excitation of surface plasmon in sturctured Au films by atomic force anodic oxidation," J. Vac. Sci. Technol. B 22, 212-215 (2004). [CrossRef]
  4. S. H. Chang, S. K. Gray and G. C. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-1365 (2005). [CrossRef] [PubMed]
  5. V. Malyarchuk, F. Hua, N. H. Mack, V. T. Velesquez, J. O. White, R. G. Nuzzo and J. A. Rogers, "A High performance plasmonic crystal sensor formed by soft nanoimprint lithography," Opt. Express 13, 5669-5675 (2005). [CrossRef] [PubMed]
  6. J. Homola, S. S. Yee and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999). [CrossRef]
  7. M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T.-W. Lee, S. K. Gray, R. G. Nuzzo and J. A. Rogers, "Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals," PNAS 103, 17143-17148 (2006). [CrossRef] [PubMed]
  8. R. Quidant, G. Badenes, S. Cheylan, R. Alcubilla, J. C. Weeber, and C. Girard, "Sub-wavelength patterning of the optical near-field," Opt. Express 12, 282-7 (2004). [CrossRef] [PubMed]
  9. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004). [CrossRef]
  10. L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. H. Chang, S. K. Gray, G. Lerondel, F. Hua, S. Jeon, J. Rogers, S. Blaize, I. Stefanon and P. Royer, "Apertureless scanning Near-field Optical Microscopy: a comparison between homodyne and heterodyne approaches," J. Opt. Soc. Am. B 23, 823-833 (2006). [CrossRef]
  11. L. Aigouy, V. Mathet, P. Beauvillainu, "Electromagnetic field distribution on a rough gold thin film: An experimental study as a function of the gold thickness," Opt. Commun. 262, 263-269 (2006). [CrossRef]
  12. R. Bachelot, P. Gleyzes and A. C. Boccara, "Near-field optical microscope based on local perturbation of a diffraction spot," Opt. Lett. 20, 1924-1926 (1995). [CrossRef] [PubMed]
  13. J. Wessel, "Surface-enhanced optical microscopy," J. Opt. Soc. Am. B 2, 1538-1540 (1985). [CrossRef]
  14. J. Seidel, S. Grafstrom, L. Eng, L. Bischoff, "Surface plasmon transmission across narrow grooves in thin silver films," Appl. Phys. Lett. 82, 1368-70 (2003). [CrossRef]
  15. Y. Inouye and S. Kawata, "Near-field scanning optical microscope with a metallic probe tip," Opt. Lett. 19, 159-161 (1994). [CrossRef] [PubMed]
  16. F. Zenhausern, M. P. O'Boyle and H. K. Wickramasinghe, "Apertureless near-field optical microscope," App. Phys. Lett. 65, 1623-1625 (1994). [CrossRef]
  17. R. Hillenbrand and F. Keilmann, "Near-field microscopy by elastic light scattering from a tip," Phil. Trans. R. Soc. Lond. A 362, 787-805 (2004). [CrossRef]
  18. R. Hillenbrand and F. Keilmann, "Complex Optical Constants on a subwavelength scale," Phys. Rev. Lett. 85, 3029-3032 (2000). [CrossRef] [PubMed]
  19. R. Hillenbrand and F. Keilmann, "Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy," Appl. Phys. B 73, 239-243 (2001). [CrossRef]
  20. G. A. Wurtz, J. S. Im, S. K. Gray and G. P. Wiederrecht, "Optical scattering from isolated metal nanoparticles and arrays," J. Phys. Chem. B 107, 14191 (2003). [CrossRef]
  21. F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim and J. A. Rogers, "Polymer Imprint Lithography with Molecular-Scale Resolution," Nano Lett. 4, 2467-2471 (2004). [CrossRef]
  22. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2000).
  23. R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, J. Aizpurua, "Coherent imaging of nanoscale plasmon patterns with a carbon nanotube probe," Appl. Phys. Lett. 83, 368-70 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited