OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 5 — May. 17, 2007

Optical near-field excitations on plasmonic nanoparticle-based structures

S. Foteinopoulou, J. P. Vigneron, and C. Vandenbem  »View Author Affiliations

Optics Express, Vol. 15, Issue 7, pp. 4253-4267 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (657 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate optical excitations on single silver nanospheres and nanosphere composites with the Finite Difference Time Domain (FDTD) method. Our objective is to achieve polarization control of the enhanced local field, pertinent to SERS applications. We employ dimer and quadrumer structures, which can display broadband and highly confined near-field-intensity enhancement comparable to or exceeding the resonant value of smaller sized isolated spheres. Our results demonstrate that the polarization of the enhanced field can be controlled by the orientation of the multimers in respect to the illumination, rather than the illumination itself. In particular, we report cases where the enhanced field shares the same polarization with the exciting field, and cases where it is predominantly perpendicular to the source field. We call the later phenomenon depolarized enhancement. Furthermore, we study a realizable nanolens based on a tapered self-similar silver nanosphere array. The time evolution of the fields in such structures show conversion of a diffraction limited Gaussian beam to a focused spot, through sequential coupling of the nano-array spheres’ Mie-plasmons. For a longitudinally excited nanolens design we observed the formation of an isolated focus with size about one tenth the vacuum wavelength. We believe such nanolens will aid scanning near-field optical microscopy (SNOM) detection and the excitation of surface plasmon based guiding devices.

© 2007 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics
(260.3910) Physical optics : Metal optics
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles

ToC Category:
Optics at Surfaces

Original Manuscript: October 9, 2006
Revised Manuscript: February 19, 2007
Manuscript Accepted: March 20, 2007
Published: April 2, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

S. Foteinopoulou, J. P. Vigneron, and C. Vandenbem, "Optical near-field excitations on plasmonic nanoparticle-based structures," Opt. Express 15, 4253-4267 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Ruppin, "Spherical and cylindrical surface polaritons in solids," in Electromagnetic Surface Modes, pp. 345-398 (John Wiley & Sons, Belfast, 1982).
  2. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West and N. J. Halas, "Surface enhanced Raman effect via the nanoshell geometry," Appl. Phys. Lett. 82, 257-259 (2003). [CrossRef]
  3. S. Schultz, D. R. Smith, J. J. Mock, and DavidA. Schultz,"Single-target molecule detection with nonbleaching multicolor immunolabels," Proc. Nat. Acad. Sci. 97, 996-1001 (2000). [CrossRef] [PubMed]
  4. T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, "Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography," Appl. Phys. Lett. 88, 101112 (2006). [CrossRef]
  5. K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, "Annealed silver-island films for applications in metal-enhanced fluorescence: Interpretation in terms of radiating plasmons," J. Fluoresc. 15, 643-654 (2005). [CrossRef] [PubMed]
  6. S. A. Maier, P. G. Kik and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003). [CrossRef]
  7. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  8. C. Girard and R. Quidant, "Nearfield optical transmittance of metal particle chain waveguides," Opt. Express 12, 6141-6146 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-25-6141. [CrossRef] [PubMed]
  9. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold Particle as a probe for apertureless SNOM," J. Microsc. 202, 72-76 (2001). [CrossRef] [PubMed]
  10. A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt. Express 14, 1557-1567 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-4-1557. [CrossRef] [PubMed]
  11. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature (London) 438, 335-338 (2005). [CrossRef]
  12. A. Taflove and S. C. Hagness, Computational Electrodynamics, 2nd ed. (Artech House, Norwood, MA).
  13. J.D. Joannopoulos, R.D. Meade and J.N. Winn, Photonic Crystals, Molding the Flow of Light. (Princeton Univ. Press, Princeton N. J., 1995).
  14. S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refractive index," Phys. Rev. Lett. 90, 107402 (2003). [CrossRef] [PubMed]
  15. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002). [CrossRef]
  16. R. W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E 64, 056625 (2001). [CrossRef]
  17. C. Oubre and P. Nordlander, "Finite-difference time-domain studies of the optical properties of nanoshell dimers," J. Phys. Chem. B 109, 10042-10051 (2005). [CrossRef]
  18. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon hybridizaton in nanoparticle dimers," Nano Lett. 4, 899-903 (2004). [CrossRef]
  19. P. B. Catrysse, H. Shin, and S. H. Fan, "Propagating modes in subwavelength cylindrical holes," J. Vac. Sci. Technol. B 23, 2675-2678 (2005). [CrossRef]
  20. H. Shin and S. H. Fan, "All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure," Phys. Rev. Lett. 96, 073907 (2006). [CrossRef] [PubMed]
  21. P. G. Kik, S. A. Maier and H. A. Atwater, "Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources," Phys. Rev. B 69, 045418 (2004). [CrossRef]
  22. W. Challener, I. Sendur, and C. Peng, "Scattered field formulation of finite difference time domain for a focused light beam in dense media with lossy materials," Opt. Express 11, 3160-3170 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-23-3160. [CrossRef] [PubMed]
  23. S. Foteinopoulou and C. M. Soukoulis, "Theoretical investigation of one-dimensional cavities in two-dimensional photonic crystals," IEEE J. Quantum Electron. 38, 844-849 (2002). [CrossRef]
  24. G. Mie, "Beitrage zur optik trüber medien, spellzien kolloïdaler metallosungen," Ann. Physik 25, 377 (1908). [CrossRef]
  25. M. Born and E. Wolf, Principles of Optics, 2nd ed. (Macmillan Co., New-York, 1964).
  26. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, FL, 1993).
  27. J. L. Young and R. O. Nelson, "A summary and systematic analysis of FDTD algorithms for linearly dispersive media," IEEE Antennas Propag. Mag. 43, 61-77 (2001). [CrossRef]
  28. S. A. Cummer, "An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy," IEEE Trans. Antennas Propag. 45, 392-400 (1997). [CrossRef]
  29. P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  30. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University, Cambridge, 1989).
  31. P. G. Etchegoin, C. Galloway, and E. C. Le Ru, "Polarization-depedent effects in surface-enhanced Raman scattering (SERS)," Phys. Chem. Chem. Phys. 8, 2624-2628 (2006). [CrossRef] [PubMed]
  32. J. Kottmann and O. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8, 655-663 (2001). http://www.opticsinfobase.org/abstract.cfm?URI=oe-8-12-655. [CrossRef] [PubMed]
  33. H. Xu, E. J. Bjerneld, M. Kall and L. Borjensson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman Scattering," Phs. Rev. Lett. 21, 4357-4360 (1999). [CrossRef]
  34. J. P. Kottman and O.J.F. Martin, "Retardation-induced plasmon resonances in coupled nanoparticles," Opt. Lett. 26, 1096 (2001). [CrossRef]
  35. E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357 (2004). [CrossRef] [PubMed]
  36. 3. S. Enoch, R. Quidant and G. Badenes, "Optical sensing based on plasmon coupling in nanoparticle arrays," Opt. Express 12, 3422-3427 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3422. [CrossRef] [PubMed]
  37. I. Romero, J. Aizpurua, G. W. Bryant and F.J. Garcia de Abajo, "Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers," Opt. Express 14, 9988-9999 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-21-9988. [CrossRef] [PubMed]
  38. R. Fuchs and F. Claro, "Multipolar response of small metallic spheres: Nonlocal Theory," Phys. Rev. B 35, 3722 (1987). [CrossRef]
  39. J. Kottmann, O. Martin, D. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2000). http://www.opticsinfobase.org/abstract.cfm?URI=oe-6-11-213. [CrossRef] [PubMed]
  40. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005). [CrossRef] [PubMed]
  41. P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, S. Fan, "Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits," Appl. Phys. Lett. 88, 031101 (2006). [CrossRef]
  42. R. Zia, M. D. Selker and M. L. Brongersma, "Leaky and bound modes of surface plasmon waveguides," Phys. Rev. B 71, 165431 (2005). [CrossRef]
  43. K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003). [CrossRef] [PubMed]
  44. S. E. Sburlan, L. A. Blanco and M. Nieto-Vesperinas, "Plasmon excitation in sets of nanoscale cylinders and spheres," Phys. Rev. B 73, 035403 (2006). [CrossRef]
  45. F. Dhili, R. Bachelot, A. Rumyantseva, G. Lerondel, and P. Royer, "Nanoparticle photosensitive polymers using local field enhancement at the end of apertureless SNOM tips," J. Microsc. 209, 214-222 (2003). [CrossRef]
  46. A. Hohenau, H. Ditlbacher, B. Lamprecht, J. R. Krenn, A. Leitner and F. R. Aussenegg, "Electron beam lithography, a helpful tool for nanooptics," in press Micro. Eng.
  47. R. Fikri, "Modelling of the apertureless near-field scanning optical microscope with the finite element method," Ph. D. thesis, Universit de Technologie de Troyes (2003).
  48. P. G. Kik, S. A. Maier, and H. A. Atwater, "Plasmon printing - a new approach to near-field lithography," Mat. Res. Soc. Symp. Proc. 705, Y3.6 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2064 KB)     
» Media 2: AVI (1550 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited