OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 5 — May. 17, 2007

Competitive displacement: A sensitive and selective method for the detection of unlabeled molecules

J. Bishop, A. M. Chagovetz, and S. Blair  »View Author Affiliations

Optics Express, Vol. 15, Issue 8, pp. 4390-4397 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1089 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new method for molecular detection that retains the sensitivity of fluorescence, but without requiring fluorescence labeling of the sample. The method works by spiking the sample solution with one or more labeled molecular species of known concentration. With proper choice of these “competitor” species, their binding kinetics can be used to quantitatively determine the concentration of unlabeled target species. This method can be applied to any fluorescence transduction mechanism that allows real-time signal acquisition, and represents an advance in mitigating certain sample processing steps. We demonstrate the method for the detection of a DNA sequence containing a single-nucleotide polymorphism (SNP).

© 2007 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

ToC Category:

Original Manuscript: January 8, 2007
Revised Manuscript: March 17, 2007
Manuscript Accepted: March 29, 2007
Published: April 3, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Justin Bishop, Alexander M. Chagovetz, and Steve Blair, "Competitive displacement: A sensitive and selective method for the detection of unlabeled molecules," Opt. Express 15, 4390-4397 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. E. Moerner and D. P. Fromm "Methods of single-molecule fluorescence spectroscopy and microscopy," Rev. Sci. Instrum. 74,3597-3619 (2003). [CrossRef]
  2. E. Roederer and G. J. Bastiaans "Microgravimetric immunoassay with piezoelectric crystals," Anal. Chem. 55,2333-2336 (1983). [CrossRef]
  3. J. Ngeh-Ngwainbi, A. A. Suleiman, and G. G. Guilbault "Piezoelectric crystal biosensors," Biosens. Bioelectron. 5,13-26 (1990). [CrossRef] [PubMed]
  4. B. Liedberg, C. Nylander, and I. Lundström "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4,299-304 (1983). [CrossRef]
  5. N. Bianchi, C. Rustigliano, M. Tomassetti, G. Feriotto, F. Zorzato, and R. Gambari "Biosensor technology and surface plasmon resonance for real-time detection of HIV-1 genomic sequences amplified by polymerase chain reaction," Clin. Diagn. Virol. 8,199-208 (1997). [CrossRef] [PubMed]
  6. A.W. Wark, H. J. Lee, and R. M. Corn "Long-range surface plasmon resonance imaging for bioaffinity sensors," Anal. Chem. 77,3904-3907 (2005). [CrossRef] [PubMed]
  7. H. Vaisocherova, A. Zitova, M. Lachmanova, J. Stepanek, S. Karlikova, R. Liboska, D. Rejman, I. Rosenberg, and J. Homola "Investigating oligonucleotide hybridization at subnanomolar level by surface plasmon resonance biosensor method," Biopolymers 82,394-398 (2005). [CrossRef] [PubMed]
  8. T. Okamoto, I. Yamaguchi, and T. Kobayashi "Local plasmon sensor with gold colloid monolayers deposited upon glass substrates," Opt. Lett. 25,372-374 (2000). [CrossRef]
  9. C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. V. Duyne "A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of Concanavalin A to Monosaccharide functionalized self-assembled monolayer," J. Am. Chem. Soc. 126,12669-12676 (2005). [CrossRef]
  10. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall "Plasmonic sensing characteristics of single nanometric holes," Nano Lett. 5,2335-2339 (2005). [CrossRef] [PubMed]
  11. R. W. Boyd and J. E. Heebner "Sensitive disk resonator photonic biosensor," Appl. Opt. 40,5742-5747 (2001). [CrossRef]
  12. H. Altug and J. Vuckovic "Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays," Opt. Lett. 30,982-984 (2005). [CrossRef] [PubMed]
  13. B. Ilic, Y. Yang, K. Aubin, R. Reichenbach, S. Krylov, and H. G. Craighead "Enumeration of DNA molecules bound to a nanomechanical oscillator," Nano Lett. 5,925-929 (2005). [CrossRef] [PubMed]
  14. J. J. Storhoff, S. S. Marla, V. Garimella, and C. A. MirkinLabels and detection methods 147-174. Springer 2005.
  15. Y. Zhang, D. A. Hammer, and D. J. Graves "Competitive hybridization kinetics reveals unexpected behavior patterns," Biophys. J. 89,2950-2959 (2005). [CrossRef] [PubMed]
  16. J. Bishop, S. Blair, and A. Chagovetz "A competitive kinetic model of nucleic acid surface hybridization in the presence of point mutants," Biophys. J. 90,831-840 (2006). [CrossRef]
  17. J. Bishop, A. Chagovetz, and S. Blair "Competitive displacement of DNA during surface hybridization," Biophys. J. 92,L10-L12 (2007). [CrossRef]
  18. M. R. Henry, P. W. Stevens, J. Sun, and D. M. Kelso "Real-time measurements of DNA hybridization on microparticles with fluorescence resonance energy transfer," Anal. Biochem. 276,204-214 (1999). [CrossRef] [PubMed]
  19. W. M. Reichert "Evanescent detection of adsorbed protein films: assessment of optical considerations for absorbance and fluorescence spectroscopy at the crystal solution and polymer solutions interfaces," Crit. Rev. Biocompat. 5,173 (1989).
  20. Y. Zhou, P. J. Laybourn, J. V. Magill, and R. M. D. L. Rue "An evanescent fluorescence biosensor using ionexchanged buried waveguides and the enhancement of peak fluorescence," Biosen. Bioelectron. 6,595-607 (1991). [CrossRef]
  21. T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron "Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor," Biosen. Bioelectron. 11,149-160 (1996). [CrossRef]
  22. J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, and G. P. Davidson "Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay," Biosen. Bioelectron. 6,201-214 (1991). [CrossRef]
  23. H. Ditlbacher, N. Felidj, J. R. Krenn, B. Lambprecht, A. Leitner, and F. R. Aussenegg "Electromagnetic interaction of fluorophores with designed 2D silver nanoparticle arrays," Appl. Phys. B 73,373 (2001). [CrossRef]
  24. J. Malicka, I. Gryczynski, and J. R. Lakowicz "DNA hybridization assays using metal-enhanced fluorescence," Biochem. Bioph. Res. Co. 306,213-218 (2003). [CrossRef]
  25. Y. Liu and S. Blair "Fluorescence enhancement from an array of sub-wavelength metal apertures," Opt. Lett. 28,507-509 (2003). [CrossRef] [PubMed]
  26. D. I. Stimpson, J. V. Hoijer, W. T. Hsieh, C. Jou, J. Gordon, T. Theriault, R. Gamble, and J. D. Baldeschwieler "Real-time detection of DNA hybridization and melting on oligonucleotide arrays by using optical waveguides," P. Natl. Acad. Sci. 92,6379-6383 (1995). [CrossRef]
  27. T. A. Taton, C. A. Mirkin, and R. L. Letsinger "Scanometric DNA array detection with nanoparticle probes," Science 289,1757-1760 (2000). [CrossRef] [PubMed]
  28. J. Bishop, S. Blair, and A. Chagovetz "Convective flow effects on DNA biosensors," to appear Biosen. Bioelectron. (2007).
  29. S. Blair and Y. Chen "Resonant-enhanced evanescent-wave fluorescence biosensing using cylindrical optical cavities," Appl. Opt. 40,570-582 (2001). [CrossRef]
  30. Y. Liu, J. Bishop, L. Williams, S. Blair, and J. N. Herron "Biosensing based upon molecular confinement in metallic nanocavity arrays," Nanotechnology 15,1368-1374 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited