OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 5 — May. 17, 2007

Two-dimensional silicon photonic crystal based biosensing platform for protein detection

Mindy Lee and Philippe M. Fauchet  »View Author Affiliations


Optics Express, Vol. 15, Issue 8, pp. 4530-4535 (2007)
http://dx.doi.org/10.1364/OE.15.004530


View Full Text Article

Enhanced HTML    Acrobat PDF (477 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically and experimentally demonstrate an ultrasensitive two-dimensional photonic crystal microcavity biosensor. The device is fabricated on a silicon-on-insulator wafer and operates near its resonance at 1.58 μm. Coating the sensor internal surface with proteins of different sizes produces a different amount of resonance redshift. The present device can detect a molecule monolayer with a total mass as small as 2.5 fg. The device performance is verified by measuring the redshift corresponding to the binding of glutaraldehyde and bovine serum albumin (BSA). The experimental results are in good agreement with theory and with ellipsometric measurements performed on a flat oxidized silicon wafer surface.

© 2007 Optical Society of America

OCIS Codes
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(230.5750) Optical devices : Resonators

ToC Category:
Photonic Crystals

History
Original Manuscript: January 18, 2007
Revised Manuscript: March 23, 2007
Manuscript Accepted: March 23, 2007
Published: April 3, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Mindy R. Lee and Philippe M. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Opt. Express 15, 4530-4535 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-8-4530


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Liedberg, I. Lundstrom, and E. Stenberg, "Principles of biosensing with an extended coupling matrix and surface plasmon resonance," Sens. Actuators B 11, 63-72 (1993). [CrossRef]
  2. J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, "Optical sensor based on resonant porous silicon structures," Opt. Express 13, 3754-3764 (2005). [CrossRef] [PubMed]
  3. V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, "A porous silicon-based optical interferometric biosensor," Science 278, 840-843 (1997). [CrossRef] [PubMed]
  4. F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia and M. J. Sailor, "Biomolecular screening with encoded porous-silicon photonic crystals," Nat. Mater. 1, 39-41 (2002). [CrossRef]
  5. S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, "Porous silicon microcavities for biosensing applications," Phys. Stat. Sol. A. 182, 541-546 (2000). [CrossRef]
  6. S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, "Identification of gram negative bacteria using nanoscale silicon microcavities," J. Am. Chem. Soc. 123, 11797-11798 (2001). [CrossRef] [PubMed]
  7. H. Ouyang, M. Christophersen, R. Viard, B. L. Miller and P. M. Fauchet, "Macroporous silicon microcavity for macromolecule detection," Adv. Funct. Mater. 15, 1851-1859 (2005). [CrossRef]
  8. B. T. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002). [CrossRef]
  9. I. D. Block, L. L. Chan and B. T. Cunningham, "Photonic crystal optical biosensor incorporating structured low-index porous dielectric," Sens. Actuators B 120, 187-193 (2006). [CrossRef]
  10. G. J. Sonek, "Integrated photonic crystal waveguides for micro-bioanalytical devices" in Proceedings of IEEE Conference on Microtechnologies in Medicine and Biology (IEEE, 2005), pp. 333-335.
  11. K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002). [PubMed]
  12. Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  13. B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, "Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection," Appl. Phys. Lett. 85, 4854-4856 (2004). [CrossRef]
  14. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093-1095 (2004). [CrossRef] [PubMed]
  15. H. Chen, K. K. Tsia and A. W. Poon, "Surface modes in two-dimensional photonic crystal slabs with a flat dielectric margin," Opt. Express 14, 7368-7377 (2006). [CrossRef] [PubMed]
  16. O. Painter, J. Vuckovic, and A. Scherer, "Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab," J. Opt. Am. B 16, 275-285 (1999). [CrossRef]
  17. I. D. Kuntz and W. Kauzmann, "Hydration of proteins and polypeptides," Adv. Protein Chem. 28, 239-345 (1974). [CrossRef] [PubMed]
  18. P. G. Squire, P. Moser, and C. T. O'Konski, "Hydrodynamic properties of bovine serum albumin monomer and dimer," J. Biochem. 7, 4261-4272 (1968). [CrossRef]
  19. H. Ouyang, C. C. Striemer, and P. M. Fauchet, "Quantitative analysis of the sensitivity of porous silicon optical biosensors," Appl. Phys. Lett. 88, 163108 (2006). [CrossRef]
  20. V. Kanda, J. K. Kariuki, D. J. Harrison and M. T. McDermott, "Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging," Anal. Chem. 76, 7257-7262 (2004). [CrossRef] [PubMed]
  21. D. Nedelkov, K. A. Tubbs and R. W. Nelson, "Surface plasmon resonance-enabled mass spectrometry arrays," Electrophoresis 27, 3671 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited