OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 6 — Jun. 17, 2008

Emergent properties in optically bound matter

J. M. Taylor, L. Y. Wong, C. D. Bain, and G. D. Love  »View Author Affiliations

Optics Express, Vol. 16, Issue 10, pp. 6921-6929 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (354 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Sub-micron particles have been observed to spontaneously form regular two-dimensional structures in counterpropagating evanescent laser fields. We show that collective properties of large numbers of optically-trapped particles can be qualitatively different to the properties of small numbers. This is demonstrated both with a computer model and with experimental results. As the number of particles in the structure is increased, optical binding forces can be sufficiently large to overcome the optical landscape imposed by the interference fringes of the laser beams and impose a different, competing structure.

© 2008 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(240.6700) Optics at surfaces : Surfaces
(290.4020) Scattering : Mie theory

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: April 2, 2008
Revised Manuscript: April 24, 2008
Manuscript Accepted: April 26, 2008
Published: April 30, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

J. M. Taylor, L. Y. Wong, C. D. Bain, and G. D. Love, "Emergent properties in optically bound matter," Opt. Express 16, 6921-6929 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  2. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, "Optical Binding," Phys. Rev. Lett. 63, 1233-1236 (1989). [CrossRef] [PubMed]
  3. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, "Optical Matter: Crystalization and binding in intense optical fields," Science 249, 749-754 (1990). [CrossRef] [PubMed]
  4. N. K. Metzger, E. M. Wright, and K. Dholakia, "Theory and simulation of the Bistable behaviour of optically bound particles in the Mie size regime," New J. Phys. 8, 139 (2006). [CrossRef]
  5. N. K. Metzger, K. Dholakia, and E. M. Wright, "Observation of Bistability and Hysteresis in optical binding of two dielectric spheres," Phys. Rev. Lett. 96, 068102 (2006). [CrossRef] [PubMed]
  6. P. J. Reece, E. M. Wright, and K. Dholakia, "Experimental observation of modulation instability and Optical Spatial Soliton Arrays in soft condensed matter," Phys. Rev. Lett. 98, 203902 (2007). [CrossRef] [PubMed]
  7. J. Ng, Z. F. Lin, C. T. Chan, and P. Sheng, "Photonic clusters formed by dielectric microspheres: numerical simulations," Phys. Rev. B 72, 085130 (2005). [CrossRef]
  8. C. D. Mellor and C. D. Bain, "Array formation in evanescent waves," ChemPhysChem 7, 329-332 (2006). [CrossRef]
  9. C. D. Mellor, T. A. Fennerty, and C. D. Bain, "Polarization effects in optically bound particle arrays," Opt. Express 14, 10079-10088 (2006). [CrossRef] [PubMed]
  10. S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, "One-Dimensional Optically Bound Arrays of Microscopic Particles," Phys. Rev. Lett. 89, 283901 (2002). [CrossRef]
  11. D. McGloin, A. E. Carruthers, K. Dholakia, and E. M. Wright, "Optically bound microscopic particles in one dimension," Phys. Rev. E 69, 021403 (2004). [CrossRef]
  12. T. Cizmar, M. Siler, M. Sery, P. Zemanek, V. Garces-Chavez, and K. Dholakia, "Optical sorting and detection of submicrometer objects in a motional standing wave," Phys. Rev. B 74, 035105 (2006). [CrossRef]
  13. K. Dholakia and P. Reece, "Optical micromanipulation takes hold," Nano Today 1, 18-27 (2006). [CrossRef]
  14. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1972).
  15. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  16. Y.-L. Xu, "Electromagnetic Scattering by an Aggregate of Spheres," Appl. Opt. 34, 4573-4588 (1995). [CrossRef] [PubMed]
  17. D. W. Mackowski, "Analysis of Radiative Scattering for Multiple Sphere Configurations," Proc. R. Soc. London, Ser. A 433, 599-614 (1991). [CrossRef]
  18. J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of Net Radiation Force and Torque for a Spherical Particle Illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989). [CrossRef]
  19. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, International Series of Monographs on Physics (Clarendon Press, Oxford, 1986).
  20. P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations (Springer-Verlag, 1992).
  21. M. Siler, M. Ser�??y, T. Ci�?zmar, and P. Zemanek, "Submicron particle localization using evanescent field," Proc. SPIE 5930, 59300R (2005).
  22. J. Ng and C. T. Chan. Private communication.
  23. J. Lekner, "Force on a scatterer in counter-propagating coherent beams," J. Opt. A 7, 238-248 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1369 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited