OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 6 — Jun. 17, 2008

Pump-probe imaging of nanosecond laser-induced bubbles in agar gel

R. Evans, S. Camacho-López, F. G. Pérez-Gutiérrez, and G. Aguilar  »View Author Affiliations


Optics Express, Vol. 16, Issue 10, pp. 7481-7492 (2008)
http://dx.doi.org/10.1364/OE.16.007481


View Full Text Article

Enhanced HTML    Acrobat PDF (700 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we show results of Nd:YAG laser-induced bubbles formed in a one millimeter thick agar gel slab. The nine nanosecond duration pulse with a wave length of 532 nm was tightly focused inside the bulk of the gel sample. We present for the first time a pump-probe laser-flash shadowgraphy system that uses two electronically delayed Nd:YAG lasers to image the the bubble formation and shock wave fronts with nanosecond temporal resolution and up to nine seconds of temporal range. The shock waves generated by the laser are shown to begin at an earlier times within the laser pulse as the pulse energy increases. The shock wave velocity is used to infer a shocked to unshocked material pressure difference of up to 500 MPa. The bubble created settles to a quasi-stable size that has a linear relation to the maximum bubble size. The energy stored in the bubble is shown to increase nonlinearly with applied laser energy, and corresponds in form to the energy transmission in the agar gel. We show that the interaction is highly nonlinear, and most likely is plasma-mediated.

© 2008 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(170.1020) Medical optics and biotechnology : Ablation of tissue
(350.3850) Other areas of optics : Materials processing
(110.6915) Imaging systems : Time imaging

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 18, 2008
Revised Manuscript: April 9, 2008
Manuscript Accepted: April 9, 2008
Published: May 8, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

Citation
R. Evans, S. Camacho-López, F. G. Pérez-Gutiérrez, and G. Aguilar, "Pump-probe imaging of nanosecond laser-induced bubbles in agar gel," Opt. Express 16, 7481-7492 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-10-7481


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Vogel and V. Venugopalan, "Mechanisms of pulsed laser ablation of biological tissues," Chem. Rev. 103, 577-644 (2003). [CrossRef] [PubMed]
  2. E. A. Brujan and A. Vogel, "Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom," J. Fluid Mech. 558, 281-308 (2006). [CrossRef]
  3. K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, "Pulsed laser microbeam-induced cell lysis: timeresolved imaging and analysis of hydrodynamic effects," Biophys. J. 91, 317-329 (2006). [CrossRef] [PubMed]
  4. C. B. Schaffer and N. Nishimura and E. Glezer, A. M. T. Kim, and E. Mazur, "Dynamics of femtosecond laserinduced breakdown in water from femtoseconds to microseconds," Opt. Express 3, 196-204 (2002).
  5. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005). [CrossRef]
  6. K. R. Rau, A. Guerra, A. Vogel, and V. Venugopalan, "Investigation of laser-induced cell lysis using time-resolved imaging," Appl. Phys. Lett. 84, 2940-2942 (2004). [CrossRef]
  7. E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel, "Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus," J. Fluid Mech. 433, 283-314 (2001).
  8. A. B. Gojani and K. Takayama, "Experimental determination of shock Hugoniot for water, castor oil, and aqueous solutions of sodium chloride, sucrose and gelatin," Mater. Sci. Forum 566, 23-28 (2008). [CrossRef]
  9. A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Blrngruber, and T. F. Deutsch, "Non-invasive determination of shock wave pressure generated by optical breakdown," Appl. Phys. B 53, 237-245 (1991). [CrossRef]
  10. J. Noack, D. X. Hammer, G. Noojin, B. Rockwell, and A. Vogel, "Influence of pulse duration on mechanical effects after laser-induced breakdown in water," J. Appl. Phys. 83, 7488-7496 (1998). [CrossRef]
  11. M. H. Niemz, E. G. Klancnik, and J. F. Bille, "Plasma-mediated ablation of corneal tissue at 1053 nm using a Nd:YLF Oscillator/Regenerative Amplifier Laser," Laser Surg. Med. 11, 426-431 (1991). [CrossRef]
  12. K. Nagayama, Y. Mori, Y. Motegi, and M. Nakahara, "Shock Hugoniot for biological materials," Shock Waves 15, 267-275 (2006). [CrossRef]
  13. A. Oraevsky, L. Da Silva, A. Rubenchik, M. Feit, M. Glinsky, M. Perry, B. Mammini, W. Small, and B. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: Relative role of linear and nonlinear absorption," IEEE J. Quantum Electron. 2, 801-810 (1996). [CrossRef]
  14. B. Zysset, J. G. Fujimoto and and T. F. Deutsch, "Time-resolved measurements of picosecond opticol breakdown," Appl. Phys. B 48, 137-147 (1989). [CrossRef]
  15. A. Vogel, S. Busch, and U. Parlitz, "Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water," J. Acoust. Soc. Am. 100, 148-166 (1996). [CrossRef]
  16. F. Docchi, P. Regond, M. R. C. Capon, and J. Mellerio, "Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 1: Analysis of the plasma starting times," Appl. Opt. 27, 3661-3669 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited