OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 6 — Jun. 17, 2008

Near-field Raman imaging using optically trapped dielectric microsphere

Johnson Kasim, Yu Ting, You Yu Meng, Liu Jin Ping, Alex See, Li Lain Jong, and Shen Ze Xiang  »View Author Affiliations

Optics Express, Vol. 16, Issue 11, pp. 7976-7984 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (535 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The stumbling block of employing Raman imaging in nanoscience and nanotechnology is the diffraction-limited spatial resolution. Several approaches have been employed to improve the spatial resolution, among which aperture and apertureless near-field Raman techniques are the most frequently used. In this letter, we report a new approach in doing near-field Raman imaging with spatial resolution of about 80 nm, by trapping and scanning a polystyrene microsphere over the sample surface in water. We have used this technique to resolve PMOS transistors with SiGe source drain stressors with poly-Si gates, as well as gold nanopatterns with excellent reproducibility.

© 2008 Optical Society of America

OCIS Codes
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(170.5810) Medical optics and biotechnology : Scanning microscopy
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: January 29, 2008
Revised Manuscript: March 2, 2008
Manuscript Accepted: March 25, 2008
Published: May 19, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

Johnson Kasim, Yu Ting, You Y. Meng, Liu J. Ping, Alex See, Li L. Jong, and Shen Z. Xiang, "Near-field Raman imaging using optically trapped dielectric microsphere," Opt. Express 16, 7976-7984 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution l/20," Appl. Phys. Lett. 44, 651 - 653 (1984). [CrossRef]
  2. B. Hecht, H. Heinzelmann, and D. W. Pohl, "Combined aperture SNOM/PSTM: best of both worlds?," Ultramicroscopy 57, 228 - 234 (1995). [CrossRef]
  3. J. Kim, J. H. Kim, K. B. Song, S. Q. Lee, E. K. Kim, S. E. Choi, Y. Lee, and K. H. Park, "Near-field imaging of surface plasmon on Au nano-dots fabricated by scanning probe lithography," J. Microsc. 209, 236 - 239 (2003). [CrossRef] [PubMed]
  4. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning interferometric apertureless microscopy: Optical imaging at 10 Angstrom resolution," Science 269, 1083 - 1085 (1995). [CrossRef] [PubMed]
  5. D. H. Pan, N. Klymyshyn, D. H. Hu, and H. P. Lu, "Tip-enhanced near-field Raman spectroscopy probing single dye-sensitized TiO2 nanoparticles," Appl. Phys. Lett. 88, 093121 (2006). [CrossRef]
  6. H. G. Frey, C. Bolwien, A. Brandenburg, R. Ros, and D. Anselmetti, "Optimized apertureless optical near-field probes with 15 nm optical resolution," Nanotechnology 17, 3105 - 3110 (2006). [CrossRef]
  7. D. P. Tsai, A. Othonos, M. Moskovits, and D. Uttamchandani, "Raman spectroscopy using a fiber optic probe with subwavelength aperture," Appl. Phys. Lett. 64, 1768 - 1770 (1994). [CrossRef]
  8. C. L. Jahncke, M. A. Paesler, and H. D. Hallen, "Raman imaging with near-field scanning optical microscopy," Appl. Phys. Lett. 67, 2483 - 2485 (1995). [CrossRef]
  9. J. Grausem, B. Humbert, M. Spajer, D. Courjon, A. Burneau, and J. Oswalt, "Near-field Raman spectroscopy," J. Raman Specstrosc. 30, 833 - 840 (1999). [CrossRef]
  10. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, "Scanning near-field optical microscopy with aperture probes: Fundamentals and applications," J. Chem. Phys. 112, 7761 - 7774 (2000). [CrossRef]
  11. M. S. Anderson, "Locally enhanced Raman spectroscopy with an atomic force microscope," Appl. Phys. Lett. 76, 3130 - 3132 (2000). [CrossRef]
  12. W. X. Sun and Z. X. Shen, "Near-field scanning Raman microscopy using apertureless probes," J. Raman Spectrosc. 34, 668 - 676 (2003). [CrossRef]
  13. N. Anderson, A. Hartschuh, and L. Novotny, "Near-field Raman microscopy," Materials Today 8, 50 - 54 (2005).
  14. Y. Saito, M. Motohashi, N. Hayazawa, M. Iyoki, and S. Kawata, "Nanoscale characterization of strained silicon by tip-enhanced Raman spectroscope in reflection mode," Appl. Phys. Lett. 88, 143109 (2006). [CrossRef]
  15. N. Anderson, A. Bouhelier, and L. Novotny, "Near-field photonics: tip-enhanced microscopy and spectroscopy on the nanoscale," J. Opt. A 8, S227 - S233 (2006). [CrossRef]
  16. D. Richards, R. G. Milner, F. Huang, and F. Festy, "Tip-enhanced Raman microscopy: practicalities and limitations," J. Raman Spectrosc. 34, 663 - 667 (2003). [CrossRef]
  17. N. Lee, R. D. Hartschuh, D. Mehtani, A. Kisliuk, J. F. Maguire, M. Green, M. D. Foster, and A. P. Sokolov, "High constrast scanning nano-Raman spectroscopy of silicon," J. Raman Spectrosc. 38, 789 - 796 (2007). [CrossRef]
  18. R. Ossikovski, Q. Nguyen, and G. Picardi, "Simple model for the polarization effects in tip-enhanced Raman spectroscopy," Phys. Rev. B 75, 045412 (2007). [CrossRef]
  19. N. Hayazawa, M. Motohashi, Y. Saito, H. Ishitobi, A. Ono, T. Ichimura, P. Verma, and S. Kawata, "Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy," J. Raman Spectrosc. 38, 684 - 696 (2007). [CrossRef]
  20. N. Lee, R. D. Hartschuh, D. Mehtani, A. Kisliuk, J. F. Maguire, M. Green, M. D. Foster, and A. P. Sokolov, "High constrast scanning nano-Raman spectroscopy of silicon," J. Raman Spectrosc. 38, 789 - 796 (2007). [CrossRef]
  21. S. H. Christiansen, M. Becker, S. Fahlbusch, J. Michler, V. Sivakov, G. Andra, and R. Geiger, "Signal enhancement in nano-Raman spectroscopy by gold caps on silicon nanowires obtained by vapour-liquid-solid growth," Nanotechnology 18, 035503 (2007). [CrossRef] [PubMed]
  22. M. Becker, V. Sivakov, G. Andra, R. Geiger, J. Schreiber, S. Hoffmann, J. Michler, A. P. Milenin, P. Werner, and S. H. Christiansen, "The SERS and TERS effects obtained by gold droplets on top of Si nanowires," Nano Lett. 7, 75 - 80 (2007). [CrossRef] [PubMed]
  23. A. Ashkin, "Applications of laser radiation pressure," Science 210, 1081 - 1088 (1980). [CrossRef] [PubMed]
  24. A. Ashkin, "Optical trapping and manipulation of neutral particles using lasers," Proc. Natl. Acad. Sci. USA 94, 4853 - 4860 (1997). [CrossRef] [PubMed]
  25. X. Li, Z. G. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express 13, 526 - 533 (2005). [CrossRef] [PubMed]
  26. S. Lecler, Y. Takakura, and P. Meyrueis, "Properties of a three-dimensional photonic jet," Opt. Lett. 30, 2641 - 2643 (2005). [CrossRef] [PubMed]
  27. A. L. Birkbeck, S. Zlatanovic, S. C. Esener, and M. Ozkan, "Laser-tweezer-controlled solid immersion microscopy in microfluidic systems," Opt. Lett. 30, 2712 - 2714 (2005). [CrossRef] [PubMed]
  28. K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, "Enhanced Raman scattering by self-assembled silica spherical microparticles," J. Appl. Phys. 101, 063528 (2007). [CrossRef]
  29. G. Veshapidze, M. L. Trachy, M. H. Shah, and B. D. DePaola, "Reducing the uncertainty in laser beam size measurement with a scanning edge method," Appl. Opt. 45, 8197 - 8199 (2006). [CrossRef] [PubMed]
  30. E. Bonera, M. Fanciulli, and D. N. Batchelder, "Raman spectroscopy for a micrometric and tensorial analysis of stress in silicon," Appl. Phys. Lett. 81, 3377 - 3379 (2002). [CrossRef]
  31. E. Bonera, M. Fanciulli, and D. N. Batchelder, "Combining high resolution and tensorial analysis in Raman stress measurements of silicon," J. Appl. Phys. 94, 2729 - 2740 (2003). [CrossRef]
  32. P. R. Chidambaram, C. Bowen, S. Chakravarthi, C. Machala, and R. Wise, "Fundamentals of silicon material properties for successful exploitation of strain engineering in modern CMOS manufacturing," IEEE Trans. Electron Dev. 53, 944 - 964 (2006). [CrossRef]
  33. D. J. Paul, "Si/SiGe heterostructures: from material and physics to devices and circuits," Semicond. Sci. Technol. 19, R75 - R108 (2004). [CrossRef]
  34. S. L. Wu, Y. M. Lin, S. J. Chang, S. C. Lu, P. S. Chen, and C. W. Liu, "Enhanced CMOS performances using substrate strained-SiGe and mechanical strained-Si technology," IEEE Electron Device Lett. 27, 46 - 48 (2006). [CrossRef]
  35. I. D. Wolf, H. E. Maes, and S. K. Jones, "Stress measurements in silicon devices through Raman spectroscopy: Bridging the gap between theory and experiment," J. Appl. Phys. 79, 7148 - 7156 (1996). [CrossRef]
  36. S. Nakashima, T. Yamamoto, A. Ogura, K. Uejima, and T. Yamamoto, "Characterization of Si/GexSi1-x structures by micro-Raman imaging," Appl. Phys. Lett. 84, 2533 - 2535 (2004). [CrossRef]
  37. T. Mitani, S. Nakashima, H. Okumura, and A. Ogura, "Depth profiling of strain and defects in Si/Si1-xGex/Si heterostructures by micro-Raman imaging," J. Appl. Phys. 100, 073511 (2006). [CrossRef]
  38. E. Anastassakis and E. Liarokapis, "Polycrystalline Si under strain: Elastic and lattice-dynamical considerations,"J. Appl. Phys. 62, 3346 - 3352 (1987). [CrossRef]
  39. V. Senez, A. Armigliato, I. D. Wolf, G. Carnevale, R. Balboni, S. Frabboni, and A. Benedetti, "Strain determination in silicon microstructures by combined convergent beam electron diffraction, process simulation, and micro-Raman spectroscopy," J. Appl. Phys. 94, 5574 - 5583 (2003). [CrossRef]
  40. H. H. Liu, X. F. Duan, X. Y. Qi, Q. X. Xu, H. O. Li, and H. Qian, "Nanoscale strain analysis of strained-Si metal-oxide-semiconductor field effect transistors by large angle convergent-beam electron diffraction," Appl. Phys. Lett. 88, 263513 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited