OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 6 — Jun. 17, 2008

Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and Pietro Ferraro  »View Author Affiliations

Optics Express, Vol. 16, Issue 11, pp. 8084-8093 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (331 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Lens effect was obtained in an open microfluidic system by using a thin layer of liquid on a polar electric crystal like LiNbO3. An array of liquid micro-lenses was generated by electrowetting effect in pyroelectric periodically poled crystals. Compared to conventional electrowetting devices, the pyroelectric effect allowed to have an electrode-less and circuitless configuration. An interferometric technique was used to characterize the curvature of the micro-lenses and the corresponding results are presented and discussed. The preliminary results concerning the imaging capability of the micro-lens array are also reported.

© 2008 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(220.2560) Optical design and fabrication : Propagating methods
(220.3630) Optical design and fabrication : Lenses
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Optical Design and Fabrication

Original Manuscript: February 11, 2008
Revised Manuscript: March 18, 2008
Manuscript Accepted: March 23, 2008
Published: May 20, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and Pietro Ferraro, "Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates," Opt. Express 16, 8084-8093 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Ferraro, "What breaks the shadow of the tube?" The Physics Teacher 36, 542-543 (1998). [CrossRef]
  2. B. Berge and J. Peseux, "Variable focal lens controlled by an external voltage: an application of electrowetting," Eur. Phys. J. E 3, 159-163 (2000) [CrossRef]
  3. D. Grahan-Rowen, "Liquid lenses make a splash," Nat. Photonics Volume sample, 2-4 (2006). [CrossRef]
  4. G. Beni and M. A. Tenan, "Dynamics of electrowetting displays," J. Appl. Phys. 52,6011-6015 (1981). [CrossRef]
  5. R. Hayes and D. J. Feenstra, "Video-Speed electronic paper based on electrowetting," Nature 425, 383-385 (2003). [CrossRef] [PubMed]
  6. S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85,1128-1130 (2004). [CrossRef]
  7. L. Dong, A. K. Argawal. D. J. Beebe, and H. Jiang, "Adaptive liquid microlenses activated by stimuli-responsive hydrogels," Nature 442, 551-554 (2006). [CrossRef] [PubMed]
  8. C. C. Cheng and J. A. Yeh, "Dieletrically actuated liquid lens," Opt. Express 15, 7140-7145 (2007). [CrossRef] [PubMed]
  9. D. Psaltis, S. R. Quache, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006). [CrossRef] [PubMed]
  10. F. Mugele and S. Herminghaus, "Electrostatic stabilization of fluid microstructures," Appl. Phys. Lett. 81,2303-2305 (2002). [CrossRef]
  11. T. Beerling, "Liquid metal switch employing an electrically isolated control element," US Patent N. 7,053,323 (2006).
  12. P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88,041120-3 (2006). [CrossRef]
  13. H. Ren, D. Fox, P. A. Anderson, B. Wu, S.-T. Wu, "Tunable-focus liquid lens controlled using a servo motor," Opt. Express 14, 8031-8036 (2006). [CrossRef] [PubMed]
  14. B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott, "Electrochemical principles for active control of liquids on submillimeter scales," Sci. 283, 57-60 (1999). [CrossRef]
  15. E. Colgate and H. Matsumoto, "An investigation of electrowetting-based micro actuation," J. Vac. Sci. Technol. A 8, 3625-3633 (1990). [CrossRef]
  16. A. Sharma and R. Khanna, "Pattern formation in unstable thin liquid films," Phys. Rev. Lett. 81,3463-3466 (1998). [CrossRef]
  17. D. E. Kataoka and S. M. Troian, "Patterning liquid flow on the microscopic scale," Nature 402, 794-797 (1999). [CrossRef]
  18. R. Seemann, M. Brinkmann, E. J. Kramer, F. F. Lange, and R. Lipowsky, "Wetting morphologies at microstructured surfaces," PNAS 102, 1848-1852 (2005). [CrossRef] [PubMed]
  19. H. Moon, S. K. Cho, R. L. Garrell, and C.-J. Kim, "Low voltage electrowetting-on-dielectric," J. Appl. Phys. 92, 4080-4087 (2002). [CrossRef]
  20. D. Aronov, G. Rosenman, A. Karlov, and A. Shashkin, "Wettability patterning of hydroxyapatite nanobioceramics induced by surface potential modification," Appl. Phys. Lett. 88, 163902-3 (2006). [CrossRef]
  21. D. B. Wang, R. Szoszkiewicz, M. Lucas, E. Riedo, T. Okada, S. C. Jones, S. R. Marder, J. Lee, and W. P. King, "Local wettability modification by thermochemical nanolithography with write-read-overwrite capability," Appl. Phys. Lett. 91, 243104-3 (2007). [CrossRef]
  22. M. W. J. Prinse, W. J. J. Welters, and J. W. Weekamp, "Fluid control in multichannel structures by electrocapillary pressure," Sci. 291, 277-280 (2001). [CrossRef]
  23. C. W. Monroe, L. I. Daikhin, M. Urbakh, and A. A. Kornyshev, "Electrowetting with electrolytes," Phys. Rev. Lett. 97, 136102-4 (2006). [CrossRef] [PubMed]
  24. P. Lazar and H. Riegler, "Reversible self propelled droplet movement: a new driving mechanism," Phys. Rev. Lett. 95, 136103-4 (2005). [CrossRef] [PubMed]
  25. F. Mugele and J.-C. Baret, "Electrowetting: from basics to applications," J. Phys. Condens. Matter 17, R705-R774 (2005). [CrossRef]
  26. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000). [CrossRef]
  27. R. L. Byer, "Nonlinear Optics and Solid-State Lasers:2000," IEEE J. Sel. Top. Quantum Electron. 6, 911-930 (2000). [CrossRef]
  28. F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, "Detection of ferroelectric domain reversal in KTP waveguides," J. Appl. Phys. 71,4664-4670 (1992). [CrossRef]
  29. B. Sun and J. Heikenfeld "Observation and optical implications of oil dewetting patterns in electrowetting displays" J. Micromech. Microeng. 18,025027 (2008) [CrossRef]
  30. C. H. Bulmer, W. K. Burns, and S. C. Hiser, "Pyroelectric effects in LiNbO3 channel waveguide devices," Appl. Phys. Lett. 48,1036-1038 (1986). [CrossRef]
  31. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435-436 (1993). [CrossRef]
  32. S. Grilli, M. Paturzo, L. Miccio, and P. Ferraro, "In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy," Meas. Sci. Technol. (in press).
  33. K. Nassau, H. J. Levinstein, and G. M. Loiacono, "The domain structure and etching of ferroelectric lithium niobate," Appl. Phys. Lett. 6, 228-229 (1965). [CrossRef]
  34. S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, "Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching," Appl. Phys. Lett. 87, 233106-3 (2005). [CrossRef]
  35. V. Gopalan and T. E. Mitchell, "In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy," J. Appl. Phys. 85, 2304-2311 (1999). [CrossRef]
  36. R. S. Weis and T. K. Gaylord, "Lithium Niobate: Summary of Physical Properties and Crystal Structure," Appl. Phys. A 37, 191-203 (1985). [CrossRef]
  37. E. M. Bourim, C.-W. Moon, S.-W. Lee, and I. K. Yoo, "Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals," Phys. B 383, 171-182 (2006). [CrossRef]
  38. B. Rosenblum, P. Bräunlich, and J. P. Carrico, "Thermally stimulated field emission from pyroelectric LiNbO3," Appl. Phys. Lett. 25, 17-19 (1974). [CrossRef]
  39. G. Rosenman, D. Shur, Y. E. Krasik, and A. Dunaevsky, "Electron emission from ferroelectrics," J. Appl. Phys. 88, 6109-6161 (2000). [CrossRef]
  40. F. Beunis, F. Strubbe, M. Marescaux, K. Neyts, and A. R. M. Verschueren, "Diffuse double layer charging in nonpolar liquids," Appl. Phys. Lett. 91, 182911-3 (2007). [CrossRef]
  41. M. G. Lippmann, Ann. Chim. Phys. 5, 494 (1875).
  42. P. Ferraro, S. De Nicola, and G. Coppola, "Digital holography: recent advancements and prospective improvements for applications in microscopy" in Optical Imaging Sensors and Systems for Homeland Security Applications, vol. 2 of Advanced Sciences and Technologies for Security Applications series B. Javidi ed., (Springer, 2005), pp. 47-84.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (4083 KB)     
» Media 2: MOV (3408 KB)     
» Media 3: MOV (4517 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited