OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 9 — Sep. 8, 2008

Sensitive molecular binding assay using a photonic crystal structure in total internal reflection

Yunbo Guo, Charles Divin, Andrzej Myc, Fred L. Terry, Jr., James R. Baker, Jr., Theodore B. Norris, and Jing Yong Ye  »View Author Affiliations

Optics Express, Vol. 16, Issue 16, pp. 11741-11749 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (266 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel optical sensor for label-free biomolecular binding assay using a one-dimensional photonic crystal in a total-internal-reflection geometry is proposed and demonstrated. The simple configuration provides a narrow optical resonance to enable sensitive measurements of molecular binding, and at the same time employs an open interface to enable real-time measurements of binding dynamics. Ultrathin aminopropyltriethoxysilane/ glutaraldehyde films adsorbed on the interface were detected by measuring the spectral shift of the photonic crystal resonance and the intensity ratio change in a differential reflectance measurement. A detection limit of 6×10−5 nm for molecular layer thickness was obtained, which corresponds to a detection limit for analyte adsorption of 0.06 pg/mm2 or a refractive index resolution of 3×10−8 RIU; this represents a significant improvement relative to state-of-the-art surface-plasmon-resonance-based systems.

© 2008 Optical Society of America

OCIS Codes
(260.6970) Physical optics : Total internal reflection
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(230.5298) Optical devices : Photonic crystals

ToC Category:
Remote Sensing and Sensors

Original Manuscript: June 10, 2008
Revised Manuscript: July 11, 2008
Manuscript Accepted: July 17, 2008
Published: July 22, 2008

Virtual Issues
Vol. 3, Iss. 9 Virtual Journal for Biomedical Optics

Yunbo Guo, Charles Divin, Andrzej Myc, Fred L. Terry Jr., James R. Baker Jr., Theodore B. Norris, and Jing Y. Ye, "Sensitive molecular binding assay using a photonic crystal structure in total internal reflection," Opt. Express 16, 11741-11749 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Homola, "Surface plasmon resonance sensors for detection of chemical and biological species," Chem. Rev. 108, 462-493 (2008). [CrossRef] [PubMed]
  2. X. D. Hoaa, A.G. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress," Biosens. Bioelectron. 23, 151-160 (2007). [CrossRef]
  3. J. Homola, "Present and future of surface plasmon resonance biosensors,"Anal. Bioanal. Chem. 377, 528-539 (2003). [CrossRef] [PubMed]
  4. D. G. Myszka, X. He, M. Dembo, T. A. Morton, and B. Goldstein, "Extending the range of rate constants available from BIACORE: Interpreting mass transport-influenced binding data," Biophys. J. 75, 583-594 (1998). [CrossRef] [PubMed]
  5. D. O�??Shannessy, "Determination of Kinetic Rate and Equilibrium Binding Constants for Macromolecular Interactions: A Critique of the Surface Plasmon Resonance Literature," Curr. Opin. Biotechnol. 5, 65-71 (1994). [CrossRef] [PubMed]
  6. R. Horvath, N. Skivesen, H. C. Pedersen, "Measurement of guided light-mode intensity: An alternative waveguide sensing principle," Appl. Phys. Lett. 84, 4044-4046 (2004). [CrossRef]
  7. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein Detection by Optical shift of a Resonant Microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002). [CrossRef]
  8. I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett. 89, 191106 (2006). [CrossRef]
  9. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-Free, Single-Molecule Detection with Optical Microcavities," Science 317, 783-787 (2007). [CrossRef] [PubMed]
  10. V. S. Ilchenko and M. L. Gorodetskii, "Thermal nonlinear effects in optical whispering gallery microresonators," Laser Phys. 2, 1004-1009 (1992).
  11. V. Mulloni, and L. Pavesi, "Porous silicon microcavities as optical chemical sensors," Appl. Phys. Lett. 76, 2523-2525 (2000). [CrossRef]
  12. H. Ouyang, C. C. Striemer, and P. M. Fauchet, "Quantitative analysis of the sensitivity of porous silicon optical biosensors," Appl. Phys. Lett. 88, 163108 (2006). [CrossRef]
  13. W. M. Robertson and M. S. May, "Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays," Appl. Phys. Lett. 74, 1800-1802 (1999). [CrossRef]
  14. F. Villa, L. E. Regalado, F. Ramos-Mendieta, J. Gaspar-Armenta, and T. Lopez-Rios, "Photonic crystal sensor based on surface waves for thin-film characterization," Opt. Lett. 27, 646-648 (2002). [CrossRef]
  15. B. A. Usievich, V. V. Svetikov, D. Kh. Nurligareev, and V.A. Sychugov, "Surface waves at the boundary of a system of coupled waveguides," Quantum. Electrom.  37, 981-984 (2007). [CrossRef]
  16. M. Shin and W. M. Robertson, "Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material," Sens. Actuators B 105, 360-364 (2005). [CrossRef]
  17. V. N. Konopsky and E. V. Alieva, "Photonic crystal surface waves for optical biosensors," Anal. Chem. 79, 4729-4735 (2007). [CrossRef] [PubMed]
  18. J. Y. Ye and M. Ishikawa, "Light enhancement method and device, and their applications in fluorescence detection," Patent: JP 2001-242083.
  19. H. Inouye, M. Arakawa, J. Y. Ye, T. Hattori, H. Nakatsuka, amd K. Hirao, "Optical properties of a total-reflection-type one-dimensional photonic crystal," IEEE J. Quantum. Electron. 38, 867-871(2002). [CrossRef]
  20. R. Kaiser, Y. Levy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, "Resonant enhancement of evanescent waves with a thin dielectric waveguide," Opt. Commun. 104, 234-240 (1994). [CrossRef]
  21. O. Schmidt, P. Kiesel, S. Mohta, and N. M. Johnson, "Resolving pm wavelength shifts in optical sensing," Appl. Phys. B  86, 593-600 (2007). [CrossRef]
  22. B. Ran, and S. G. Lipson, "Comparison between sensitivities of phase and intensity detection in surface plasmon resonance," Opt. Express 14, 5641-5650 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5641. [CrossRef] [PubMed]
  23. X. B. Liu, Z. Q. Cao, Q. S. Shen, and S. Huang, "Optical Sensor Based on Fabry-Perot Resonance Modes," Appl. Opt. 42, 7137-7140 (2003). [CrossRef]
  24. J. S. Shurnaker-Parry, and C. T. Campbell, "Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy," Anal. Chem. 76, 907-917 (2004). [CrossRef]
  25. D. G. Myszka, "Improving biosensor analysis," J. Mol. Recognit.  12, 279-284 (1999). [CrossRef] [PubMed]
  26. Z. Knittl, Optics of Thin films (An Optical Multilayer Theory) (Wiley, London 1976).
  27. G. T. Hermanson, Biocojugate Techniques Academic (Press, New York 1996).
  28. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films," Langmuir 14, 5636-5648 (1998). [CrossRef]
  29. C. E. Stewart, I. R. Hooper, and J. R. Sambles, "Surface plasmon differential ellipsometry of aqueous solutions for bio-chemical," J. Phys. D: Appl. Phys. 41, 105408 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited