OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 9 — Sep. 8, 2008

Denoising and 4D visualization of OCT images

Madhusudhana Gargesha, Michael W. Jenkins, Andrew M. Rollins, and David L. Wilson  »View Author Affiliations


Optics Express, Vol. 16, Issue 16, pp. 12313-12333 (2008)
http://dx.doi.org/10.1364/OE.16.012313


View Full Text Article

Enhanced HTML    Acrobat PDF (3905 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We are using Optical Coherence Tomography (OCT) to image structure and function of the developing embryonic heart in avian models. Fast OCT imaging produces very large 3D (2D + time) and 4D (3D volumes + time) data sets, which greatly challenge ones ability to visualize results. Noise in OCT images poses additional challenges. We created an algorithm with a quick, data set specific optimization for reduction of both shot and speckle noise and applied it to 3D visualization and image segmentation in OCT. When compared to baseline algorithms (median, Wiener, orthogonal wavelet, basic non-orthogonal wavelet), a panel of experts judged the new algorithm to give much improved volume renderings concerning both noise and 3D visualization. Specifically, the algorithm provided a better visualization of the myocardial and endocardial surfaces, and the interaction of the embryonic heart tube with surrounding tissue. Quantitative evaluation using an image quality figure of merit also indicated superiority of the new algorithm. Noise reduction aided semi-automatic 2D image segmentation, as quantitatively evaluated using a contour distance measure with respect to an expert segmented contour. In conclusion, the noise reduction algorithm should be quite useful for visualization and quantitative measurements (e.g., heart volume, stroke volume, contraction velocity, etc.) in OCT embryo images. With its semi-automatic, data set specific optimization, we believe that the algorithm can be applied to OCT images from other applications.

© 2008 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(100.2960) Image processing : Image analysis
(100.6890) Image processing : Three-dimensional image processing
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Image Processing

History
Original Manuscript: April 28, 2008
Revised Manuscript: June 28, 2008
Manuscript Accepted: June 30, 2008
Published: August 1, 2008

Virtual Issues
Vol. 3, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Madhusudhana Gargesha, Michael W. Jenkins, Andrew M. Rollins, and David L. Wilson, "Denoising and 4D visualization of OCT images," Opt. Express 16, 12313-12333 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-16-12313


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, "Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser," Opt. Express 15, 6251-6267 (2007). [CrossRef] [PubMed]
  2. M. Bashkansky and J. Reintjes, "Statistics and reduction of speckle in optical coherence tomography," Opt. Lett. 25, 545-547 (2000). [CrossRef]
  3. M. E Brezinski, Optical Coherence Tomography: Principles and Applications (Elsevier, 2006).
  4. A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging," Opt. Express 14, 4736-4745 (2006). [CrossRef] [PubMed]
  5. A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, "Precision of measurement of tissue optical properties with optical coherence tomography," Appl. Opt. 42, 3027-3037 (2003). [CrossRef] [PubMed]
  6. D. L. Marks, T. S. Ralston, and S. A. Boppart, "Speckle reduction by I-divergence regularization in optical coherence tomography," J. Opt. Soc. Am. A 22, 2366-2371 (2005). [CrossRef]
  7. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, "Speckle reduction in optical coherence tomography images using digital filtering," J. Opt. Soc. Am. A 24, 1901-1910 (2007). [CrossRef]
  8. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003). [CrossRef] [PubMed]
  9. P. Puvanathasan and K. Bizheva, "Speckle noise reduction algorithm for optical coherence tomography based on interval type II fuzzy set," Opt. Express 15, 15747-15758 (2007). [CrossRef] [PubMed]
  10. J. Rogowska and M. E. Brezinski, "Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images," Phys. Med. Biol. 47, 641-655 (2002). [CrossRef] [PubMed]
  11. J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999). [CrossRef]
  12. A. Achim, A. Bezerianos, and P. Tsakalides, "Novel Bayesian multiscale method for speckle removal in medical ultrasound images," IEEE Trans. Med. Imaging. 20, 772-783 (2001). [CrossRef] [PubMed]
  13. V. Dutt and J. F. Greenleaf, "Adaptive speckle reduction filter for log-compressed B-scan images," IEEE Trans. Med. Imaging. 15, 802-813 (1996). [CrossRef] [PubMed]
  14. S. Gupta, R. C. Chauhan, and S. C. Sexana, "Wavelet-based statistical approach for speckle reduction in medical ultrasound images," Medical & Biological Engineering & Computing 42, 189-192 (2004). [CrossRef] [PubMed]
  15. X. H. Hao, S. K. Gao, and X. R. Gao, "A novel multiscale nonlinear thresholding method for ultrasonic speckle suppressing," IEEE Trans. Med. Imaging. 18, 787-794 (1999). [CrossRef] [PubMed]
  16. P. Kovesi, Phase Preserving Denoising of Images. The Australian Pattern Recognition Society Conference: DICTA'99. 212-217. 1999. Perth, WA.
  17. M. A. Kutay, A. P. Petropulu, and C. W. Piccoli, "On modeling biomedical ultrasound RF echoes using a power-law shot-noise model," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 953-968 (2001). [CrossRef] [PubMed]
  18. T. Loupas, W. N. Mcdicken, and P. L. Allan, "An Adaptive Weighted Median Filter for Speckle Suppression in Medical Ultrasonic Images," IEEE.Trans. Circuits Syst. 36, 129-135 (1989). [CrossRef]
  19. J. Xie, Y. F. Jiang, H. T. Tsui, and P. A. Heng, "Boundary enhancement and speckle reduction for ultrasound images via salient structure extraction," IEEE Trans. Biomed. Eng. 53, 2300-2309 (2006). [CrossRef] [PubMed]
  20. Y. Yue, M. M. Croitoru, J. B. Zwischenberger, and J. W. Clark, "Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images," IEEE Trans. Med. Imaging. 25, 297-311 (2006). [CrossRef] [PubMed]
  21. D. F. Zha and T. S. Qiu, "A new algorithm for shot noise removal in medical ultrasound images based on alpha-stable model," International Journal of Adaptive Control and Signal Processing 20, 251-263 (2006). [CrossRef]
  22. R. C Gonzalez and R. E Woods, Digital Image Processing (Prentice Hall, 2002).
  23. W. K Pratt, Digital Image Processing (John Wiley and Sons, Inc., 2001). [CrossRef]
  24. M Sonka, V Hlavac, and R Boyle, Image Processing: Analysis and Machine Vision (Brooks and Cole Publishing, 1998).
  25. Zhang Fan, Mo Yoo Yang, Mong Koh Liang, and Kim Yongmin, "Nonlinear Diffusion in Laplacian Pyramid Domain for Ultrasonic Speckle Reduction," IEEE Trans. Med. Imaging. 26, 200-211 (2007). [CrossRef]
  26. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Trans. Image Process. 13, 600-612 (2004). [CrossRef] [PubMed]
  27. J. T. M. Verhoeven, J. M. Thijssen, and A. G. M. Theeuwes, "Improvement of Lesion Detection by Echographic Image-Processing - Signal-To-Noise-Ratio Imaging," Ultrason. Imaging 13, 238-251 (1991). [CrossRef] [PubMed]
  28. A. S. Frangakis and R. Hegerl, "Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion," J. Struct. Biol. 135, 239-250 (2001). [CrossRef] [PubMed]
  29. The Visualization Handbook (Elsevier Academic Press, 2005).
  30. B. Csebfalvi, L. Mroz, H. Hauser, A. Konig, and E. Groller, "Fast visualization of object contours by non-photorealistic volume rendering," Computer Graphics Forum 20, C452-+ (2001). [CrossRef]
  31. D. S. Ebert, C. J. Morris, P. Rheingans, and T. S. Yoo, "Designing effective transfer functions for volume rendering from photographic volumes," IEEE. Transactions on Visualization and Computer Graphics 8,183-197 (2002). [CrossRef]
  32. J. Kniss, G. Kindlmann, and C. Hansen, "Multidimensional transfer functions for interactive volume rendering," IEEE. Transactions on Visualization and Computer Graphics 8, 270-285 (2002). [CrossRef]
  33. Y. Sato, S. Nakajima, H. Atsumi, T. Koller, G. Gerig, S. Yoshida, and R. Kikinis, "3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images," Cvrmed-Mrcas'97 1205, 213-222 (1997). [CrossRef]
  34. Stalling, D , Hege, H. C , and Zockler, M.  Amira- An Advanced 3D Visualization and Modeling System. http://amira.zib.de, 2007. http://amira.zib.de.
  35. H. Ghassan, H. Judith, DTMRI Segmentation using DT-Snakes and DT-Livewire. Signal Processing and Information Technology, 2006 IEEE International Symposium on. Signal Processing and Information Technology, 2006 IEEE International Symposium on, 513-518, (2006).
  36. E. N. Mortensen and W. A. Barrett, "Interactive segmentation with intelligent scissors," Graphical Models and Image Processing 60, 349-384 (1998). [CrossRef]
  37. M. Demirci, "Matlab Image-Processing Toolbox," Computer 27, 106-107 (1994).
  38. J. S. Lim, Two-Dimensional Signal and Image Processing (Prentice Hall, Englewood Cliffs, NJ 1990).
  39. A. Chambolle, R. A. Devore, N. Y. Lee, and B. J. Lucier, "Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage," IEEE Trans. Image Process. 7, 319-335 (1998). [CrossRef]
  40. C. C. Chang, C. S. Chan, and J. Y. Hsiao, "A color image retrieval method based on local histogram," Advances in Mutlimedia Information Processing - Pcm 2001, Proceedings 2195, 831-836 (2001). [CrossRef]
  41. P. Suetens, Fundamentals of Medical Imaging (Cambridge University Press, 2002).
  42. P. Perona and J. Malik, "Scale-Space and Edge-Detection Using Anisotropic Diffusion," IEEE Trans. Pattern Anal. Mach. Intell. 12, 629-639 (1990). [CrossRef]
  43. A. L. Drishti; Volume Exploration and Presentation Tool([0.1.7. 2007). Ref Type: Computer Program
  44. E.W. Dijkstra, "A note on two problems in connection with graphs," Numerische Mathematik 1, 269-271 (1959). [CrossRef]
  45. V. Perlibakas, "Automatical detection of face features and exact face contour," Pattern. Recogn. Lett. 24, 2977-2985 (2003). [CrossRef]
  46. T. F. Cootes, A. Hill, C. J. Taylor, and J. Haslam, "Use of Active Shape Models for Locating Structure in Medical Images," Image and Vision Computing 12, 355-365 (1994). [CrossRef]
  47. T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, "Active Shape Models - Their Training and Application," Computer Vision and Image Understanding 61, 38-59 (1995). [CrossRef]
  48. T. F. Cootes, C. Beeston, G. J. Edwards, and C. J. Taylor, "A unified framework for atlas matching using Active Appearance Models," Information Processing in Medical Imaging, Proceedings 1613, 322-333 (1999). [CrossRef]
  49. T. F. Cootes, G. J. Edwards, and C. J. Taylor, "Active appearance models," IEEE Trans. Pattern Anal. Mach. Intell. 23, 681-685 (2001). [CrossRef]
  50. M. W. Jenkins, P. Patel, H. Deng, M. M. Montano, M. Watanabe, and A. M. Rollins, "Phenotyping transgenic embryonic murine hearts using optical coherence tomography," Appl. Opt. 46, 1776-1781 (2007). [CrossRef] [PubMed]
  51. M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, "4D embryonic cardiography using gated optical coherence tomography," Opt. Express 14, 736-748 (2006). [CrossRef] [PubMed]
  52. M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, "In vivo gated 4D imaging of the embryonic heart using optical coherence tomography," J. Biomed. Opt. 12, 030505 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (3198 KB)      QuickTime
» Media 2: AVI (301 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited