OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 10 — Sep. 22, 2008

Optical dissection of stimulus-evoked retinal activation

Xin-Cheng Yao and You-Bo Zhao  »View Author Affiliations


Optics Express, Vol. 16, Issue 17, pp. 12446-12459 (2008)
http://dx.doi.org/10.1364/OE.16.012446


View Full Text Article

Enhanced HTML    Acrobat PDF (952 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Better understanding of stimulus-evoked intrinsic optical signals (IOSs) in the retina promises new methodology for study and diagnosis of retinal function. Using a flood-illumination near infrared (NIR) light microscope equipped with high-speed CCD (80 Hz) and CMOS (1000 Hz) cameras, we validated depth-resolved enface imaging of fast IOSs in isolated retina of leopard frog. Both positive (increasing) and negative (decreasing) IOSs were observed at the photoreceptor and inner layers of the retina. The distribution of IOSs with opposite polarities showed a center-surround pattern. At the photoreceptor layer, negative IOSs dominated the center area illuminated by the stimulus light spot, while positive signals dominated the surrounding area. In contrast, at inner retinal layers, positive IOSs dominated the center area covered by the stimulus light spot, and negative IOSs were mainly observed in the surrounding area. Fast CMOS imaging disclosed rapid IOSs within 5 ms after the stimulus onset, and both ON and OFF optical responses were observed associated with a step light stimulus.

© 2008 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(330.5380) Vision, color, and visual optics : Physiology

ToC Category:
Vision, color, and visual optics

History
Original Manuscript: April 23, 2008
Revised Manuscript: July 3, 2008
Manuscript Accepted: July 15, 2008
Published: August 4, 2008

Virtual Issues
Vol. 3, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Xin-Cheng Yao and You-Bo Zhao, "Optical dissection of stimulus-evoked retinal activation," Opt. Express 16, 12446-12459 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-17-12446


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Sekirnjak, P. Hottowy, A. Sher, W. Dabrowski, A. M. Litke, and E. J. Chichilnisky, "Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays," J. Neurophysiol. 95, 3311-3327 (2006). [CrossRef] [PubMed]
  2. H. Kolb, E. Fernandez, and R. Nelson, "Gross Anatomy of the Eye" (2003), http://webvision.med.utah.edu/anatomy.html.
  3. K. P. Hofmann, R. Uhl, W. Hoffmann, and W. Kreutz, "Measurements on fast light-induced light-scattering and -absorption changes in outer segments of vertebrate light sensitive rod cells," Biophys. Struct. Mech. 2, 61-77 (1976). [CrossRef] [PubMed]
  4. H. H. Harary, J. E. Brown, and L. H. Pinto, "Rapid light-induced changes in near infrared transmission of rods in Bufo marinus," Science 202, 1083-1085 (1978). [CrossRef] [PubMed]
  5. D. R. Pepperberg, M. Kahlert, A. Krause, and K. P. Hofmann, "Photic modulation of a highly sensitive, near-infrared light-scattering signal recorded from intact retinal photoreceptors," Proc. Nati. Acad. Sci. USA 85, 5531-5535 (1988). [CrossRef]
  6. S. M. Dawis and M. Rossetto, "Light-evoked changes in near-infrared transmission by the ON and OFF channels of the anuran retina," Visual. Neurosci. 10, 687-692 (1993). [CrossRef]
  7. L. B. Cohen, R. D. Keynes, and B. Hille, "Light scattering and birefringence changes during nerve activity," Nature 218, 438-441 (1968). [CrossRef] [PubMed]
  8. I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, "Changes in fluorescence, turbidity, and birefringence associated with nerve excitation," Proc. Nati. Acad. Sci. USA 61, 883-888 (1968). [CrossRef]
  9. D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, "Spatio-temporal mapping of rat whisker barrels with fast scattered light signals," Neuroimage 26, 619-627 (2005). [CrossRef] [PubMed]
  10. X. C. Yao and J. S. George, "Dynamic neuroimaging of retinal light responses using fast intrinsic optical signals," Neuroimage 33, 898-906 (2006). [CrossRef] [PubMed]
  11. X. C. Yao and J. S. George, "Near-infrared imaging of fast intrinsic optical responses in visible light-activated amphibian retina," J. Biomed. Opt. 11, 064030 (2006). [CrossRef]
  12. J. L. Schei, M. D. McCluskey, A. J. Foust, X. C. Yao, and D. M. Rector, "Action potential propagation imaged with high temporal resolution near-infrared video microscopy and polarized light," Neuroimage 40, 1034-1043 (2008). [CrossRef] [PubMed]
  13. K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, "Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography," Proc. Nati. Acad. Sci. USA 103, 5066-5071 (2006). [CrossRef]
  14. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. H. Gao, and D. T. Miller, "In vivo functional imaging of human cone photoreceptors," Opt. Express 15, 16141-16160 (2007). [CrossRef] [PubMed]
  15. X. C. Yao, A. Yamauchi, B. Perry, and J. S. George, "Rapid optical coherence tomography and recording functional scattering changes from activated frog retina," Appl. Opt. 44, 2019-2023 (2005). [CrossRef] [PubMed]
  16. Y. B. Zhao and X. C. Yao, "Intrinsic optical imaging of stimulus-modulated physiological responses in amphibian retina," Opt. Lett. 33, 342-344 (2008). [CrossRef] [PubMed]
  17. H. P. Scholl and E. Zrenner, "Electrophysiology in the investigation of acquired retinal disorders," Surv. Ophthalmol. 45, 29-47 (2000). [CrossRef] [PubMed]
  18. D. C. Hood, J. G. Odel, C. S. Chen, and B. J. Winn, "The multifocal electroretinogram," J. Neuroophthalmol. 23, 225-235 (2003). [CrossRef] [PubMed]
  19. D. C. Hood, "Assessing retinal function with the multifocal technique," Prog. Retin. Eye. Res. 19, 607-646 (2000). [CrossRef] [PubMed]
  20. Y. Okawa, T. Fujikado, T. Miyoshi, H. Sawai, S. Kusaka, T. Mihashi, Y. Hirohara, and Y. Tano, "Optical imaging to evaluate retinal activation by electrical currents using suprachoroidal-transretinal stimulation," Invest. Ophthalmol. Vis. Sci. 48, 4777-4784 (2007). [CrossRef] [PubMed]
  21. G. Hanazono, K. Tsunoda, K. Shinoda, K. Tsubota, Y. Miyake, and M. Tanifuji, "Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins," Invest. Ophthalmol. Vis. Sci. 48, 2903-2912 (2007). [CrossRef] [PubMed]
  22. M. D. Abramoff, Y. H. Kwon, D. Ts'o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, "Visual stimulus-induced changes in human near-infrared fundus reflectance," Invest. Ophthalmol. Vis. Sci 47, 715-721 (2006). [CrossRef] [PubMed]
  23. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, "In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography," Opt. Lett. 31, 2308-2310 (2006). [CrossRef] [PubMed]
  24. K. Grieve and A. Roorda, "Intrinsic signals from human cone photoreceptors," Invest. Ophthalmol. Vis. Sci. 49, 713-719 (2008). [CrossRef] [PubMed]
  25. X. C. Yao, Y. B. Zhao, and C. M. Gorga, "Optical visualization of stimulus-evoked fast neural activity and spreading waves in amphibian retina " Proc. SPIE 6864, 68640M (2008). [CrossRef]
  26. P. A. Sieving, K. Murayama, and F. Naarendorp, "Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave," Visual. Neurosci. 11, 519-532 (1994). [CrossRef]
  27. W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, "Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography," Opt. Express 16, 6486-6501 (2008). [CrossRef] [PubMed]
  28. A. Roorda and D. R. Williams, "Optical fiber properties of individual human cones," J. Vis. 2, 404-412 (2002). [CrossRef]
  29. K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, "Muller cells are living optical fibers in the vertebrate retina," Proc. Nati. Acad. Sci. 104, 8287-8292 (2007). [CrossRef]
  30. W. S. Stiles and B. H. Crawford, "The luminous efficiency of rays entering the eye pupil at different points," Proc R Soc Lond B. 112, 428-450 (1933). [CrossRef]
  31. H. Kuhn, N. Bennett, M. Michel-Villaz, and M. Chabre, "Interactions between photoexcited rhodopsin and GTP-binding protein: kinetic and stoichiometric analyses from light-scattering changes," Proc. Nati. Acad. Sci. USA 78, 6873-6877 (1981). [CrossRef]
  32. V. Y. Arshavsky, T. D. Lamb, and E. N. Pugh, Jr., "G proteins and phototransduction," Annu. Rev. Phys. 64, 153-187 (2002). [CrossRef]
  33. S. Barnes, "Center-surround antagonism mediated by proton signaling at the cone photoreceptor synapse," J Gen. Physiol. 122, 653-656 (2003). [CrossRef] [PubMed]
  34. A. J. Foust and D. M. Rector, "Optically teasing apart neural swelling and depolarization," Neuroscience 145, 887-899 (2007). [CrossRef] [PubMed]
  35. B. M. Salzberg, A. L. Obaid, and H. Gainer, "Large and rapid changes in light scattering accompany secretion by nerve terminals in the mammalian neurohypophysis," J. Gen. Physiol. 86, 395-411 (1985). [CrossRef] [PubMed]
  36. D. Landowne, "Measuring nerve excitation with polarized light," Jpn. J. Physiol. 43Suppl 1, S7-11 (1993). [PubMed]
  37. R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld, "Noninvasive detection of changes in membrane potential in cultured neurons by light scattering," Proc. Nati. Acad. Sci. USA 88, 9382-9386 (1991). [CrossRef]
  38. X. C. Yao, D. M. Rector, and J. S. George, "Optical lever recording of displacements from activated lobster nerve bundles and Nitella internodes," Appl. Opt. 42, 2972-2978 (2003). [CrossRef] [PubMed]
  39. I. Tasaki and P. M. Byrne, "Rapid structural changes in nerve fibers evoked by electric current pulses," Biochem. Biophys. Res. Commun. 188, 559-564 (1992). [CrossRef] [PubMed]
  40. G. H. Kim, P. Kosterin, A. L. Obaid, and B. M. Salzberg, "A mechanical spike accompanies the action potential in Mammalian nerve terminals," Biophys. J. 92, 3122-3129 (2007). [CrossRef] [PubMed]
  41. L. B. Cohen, "Changes in neuron structure during action potential propagation and synaptic transmission," Physiol. Rev. 53, 373-418 (1973). [PubMed]
  42. X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, "Cross-polarized reflected light measurement of fast optical responses associated with neural activation," Biophys. J. 88, 4170-4177 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (2062 KB)     
» Media 2: MPG (2062 KB)     
» Media 3: MPG (2062 KB)     
» Media 4: MPG (2250 KB)     
» Media 5: MPG (2251 KB)     
» Media 6: MPG (2358 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited