OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 10 — Sep. 22, 2008

Two-photon fluorescence correlation spectroscopy through a dual-clad optical fiber

Yu-Chung Chang, Jing Yong Ye, Thommey Thomas, Yi Chen, James R. Baker, Jr., and Theodore B. Norris  »View Author Affiliations


Optics Express, Vol. 16, Issue 17, pp. 12640-12649 (2008)
http://dx.doi.org/10.1364/OE.16.012640


View Full Text Article

Enhanced HTML    Acrobat PDF (157 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the utilization of a dual-clad optical fiber for two-photon excited fluorescence correlation spectroscopy (FCS). High excitation efficiency is obtained by sending prechirped ultrafast pulses through the single-mode core of the fiber, while the fluorescence collection efficiency is enhanced because of the larger numerical aperture of the inner cladding. We show that the utilization of a dual-clad fiber is critical for ultrasensitive two-photon fluorescence detection. Our system has the ability to detect fluorescent nanospheres as small as 12 nm in radius. Quantum dots of radius 7 nm are also measured and show excellent signal to noise ratio. The particle sizes obtained from the fiber FCS system were confirmed by measurements using a commercial dynamic light scattering (DLS) system.

© 2008 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(190.4180) Nonlinear optics : Multiphoton processes
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Spectroscopy

History
Original Manuscript: May 22, 2008
Revised Manuscript: August 2, 2008
Manuscript Accepted: August 4, 2008
Published: August 6, 2008

Virtual Issues
Vol. 3, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Yu-Chung Chang, Jing Yong Ye, Thommey Thomas, Yi Chen, James R. Baker, and Theodore B. Norris, "Two-photon fluorescence correlation spectroscopy through a dual-clad optical fiber," Opt. Express 16, 12640-12649 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-17-12640


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Magde, W. W. Webb, E. Elson, “Thermodynamic Fluctuations in a Reacting System - Measurement by Fluorescence Correlation Spectroscopy,” Phys. Rev. Lett. 29, 705-&(1972). [CrossRef]
  2. M. Eigen, R. Rigler, “Sorting Single Molecules - Application to Diagnostics and Evolutionary Biotechnology,” Proc. Natl. Acad. Sci. USA 91, 5740–5747 (1994). [CrossRef] [PubMed]
  3. M. Bohmer, M. Wahl, H. J. Rahn, R. Erdmann, J. Enderlein, “Time-resolved fluorescence correlation spectroscopy,” Chem. Phys. Lett. 353, 439–445 (2002). [CrossRef]
  4. K. M. Berland, P. T. C. So, E. Gratton, “2-Photon Fluorescence Correlation Spectroscopy - Method and Application to the Intracellular Environment,” Biophys. J. 68, 694–701 (1995). [CrossRef] [PubMed]
  5. P. Schwille, U. Haupts, S. Maiti, W. W. Webb, “Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophys. J. 77, 2251–2265 (1999). [CrossRef] [PubMed]
  6. E. L. Elson, D. Magde, “Fluorescence Correlation Spectroscopy .1. Conceptual Basis and Theory,” Biopolymers 13, 1–27 (1974). [CrossRef]
  7. R. Rigler, E. Elson, Fluorescence correlation spectroscopy : theory and applications (Springer, Berlin ; New York, 2001). [CrossRef]
  8. E. L. Elson, “Quick tour of fluorescence correlation spectroscopy from its inception,” J. Biomed. Opt. 9, 857–864 (2004). [CrossRef] [PubMed]
  9. F. Helmchen, “Miniaturization of fluorescence microscopes using fibre optics,” Exp Physiol 87, 737–745 (2002). [CrossRef] [PubMed]
  10. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 78, 3859–3873 (2006). [CrossRef] [PubMed]
  11. K. Garai, M. Muralidhar, S. Maiti, “Fiber-optic fluorescence correlation spectrometer,” Appl. Opt. 45, 7538–7542 (2006). [CrossRef] [PubMed]
  12. K. Garai, R. Sureka, S. Maiti, “Detecting amyloid-beta aggregation with fiber-based fluorescence correlation spectroscopy,” Biophys. J. 92, L55–L57 (2007). [CrossRef] [PubMed]
  13. J. Mertz, C. Xu, W. W. Webb, “Single-molecule detection by two-photon-excited fluorescence,” Opt. Lett. 20, 2532–2534 (1995). [CrossRef] [PubMed]
  14. J. Y. Ye, M. T. Myaing, T. B. Norris, T. Thomas, J. Baker, “Biosensing based on two-photon fluorescence measurements through optical fibers,” Opt. Lett. 27, 1412–1414 (2002). [CrossRef]
  15. S. A. Kim, K. G. Heinze, P. Schwille, “Fluorescence correlation spectroscopy in living cells,” Nature Methods 4, 963–973 (2007). [CrossRef] [PubMed]
  16. T. P. Thomas, M. T. Myaing, J. Y. Ye, K. Candido, A. Kotlyar, J. Beals, P. Cao, B. Keszler, A. K. Patri, T. B. Norris, J. R. Baker, “Detection and analysis of tumor fluorescence using a two-photon optical fiber probe,” Biophys. J. 86, 3959–3965 (2004). [CrossRef] [PubMed]
  17. M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, “Enhanced two-photon biosensing with double-clad photonic crystal fibers,” Opt. Lett. 28, 1224–1226 (2003). [CrossRef] [PubMed]
  18. J.Y. Ye, M. T. Myaing, T.P. Thomas, I.J. Majoros, A. Kotlyar, J.R. Baker, Jr., W.J. Wadsworth, G. Bouwmans, J.C. Knight, P.J. Russell, T.B. Norris, “Development of a double-clad photonic-crystal-fiber based scanning Microscope,” in Proc. of the SPIE, Ammasi Periasamy ed., Vol. 5700, pp. 23–27 (2005).
  19. T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, T. B. Norris, J. R. Baker, “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” J. Biomed. Opt. 13, 014024 (2008). [CrossRef] [PubMed]
  20. N. L. Thompson, “Fluorescence correlation spectroscopy,” in Topics in Fluorescnce Spectroscopy, J. R. Lakowicz, ed. (Plenum Press, New York, 1991).
  21. S. H. Behrens, D. G. Grier, “The charge of glass and silica surfaces,” J of Chem. Phys. 115, 6716–6721 (2001). [CrossRef]
  22. D. C. Lamb, A. Schenk, C. Rocker, C. Scalfi-Happ, G. U. Nienhaus, “Sensitivity enhancement in fluorescence correlation spectroscopy of multiple species using time-gated detection,” Biophys. J. 79, 1129–1138 (2000). [CrossRef] [PubMed]
  23. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, W. F. W., W. W. Webb, “Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in vivo,” Science 300, 1434–1436 (2003). [CrossRef] [PubMed]
  24. H. Kobayashi, Y. Hama, Y. Koyama, T. Barrett, C. A. Regino, Y. Urano, P. L. Choyke, “Simultaneous multicolor imaging of five different lymphatic basins using quantum dots,” Nano Lett. 7, 1711–1716 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited