OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 10 — Sep. 22, 2008

Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part I: Theory and simulations

Wei-Chuan Shih, Kate L. Bechtel, and Michael S. Feld  »View Author Affiliations

Optics Express, Vol. 16, Issue 17, pp. 12726-12736 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel technique, intrinsic Raman spectroscopy (IRS), to correct turbidity-induced Raman spectral distortions, resulting in the intrinsic Raman spectrum that would be observed in the absence of scattering and absorption. We develop an expression relating the observed and intrinsic Raman spectra through diffuse reflectance using the photon migration depiction of light transport. Numerical simulations are employed to validate the theoretical results and study the dependence of this expression on sample size and elastic scattering anisotropy.

© 2008 Optical Society of America

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5280) Medical optics and biotechnology : Photon migration
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: May 27, 2008
Revised Manuscript: July 19, 2008
Manuscript Accepted: July 24, 2008
Published: August 7, 2008

Virtual Issues
Vol. 3, Iss. 10 Virtual Journal for Biomedical Optics

Wei-Chuan Shih, Kate L. Bechtel, and Michael S. Feld, "Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part I: Theory and simulations," Opt. Express 16, 12726-12736 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Wu, M. S. Feld, and R. P. Rava, "Analytical model for extracting intrinsic fluorescence in turbid media," Appl. Opt. 32, 3585-3595 (1993). [CrossRef] [PubMed]
  2. Q. G. Zhang, M. G. Muller, J. Wu, and M. S. Feld, "Turbidity-free fluorescence spectroscopy of biological tissue," Opt. Lett. 25, 1451-1453 (2000). [CrossRef]
  3. N. N. Zhadin and R. R. Alfano, "Correction of the internal absorption effect in fluorescence emission and excitation spectra from absorbing and highly scattering media: Theory and experiment," J. Biomed. Opt. 3, 171-186 (1998). [CrossRef]
  4. C. M. Gardner, S. L. Jacques, and A. J. Welch, "Fluorescence spectroscopy of tissue: Recovery of intrinsic fluorescence from measured fluorescence," Appl. Opt. 35, 1780-1792 (1996). [CrossRef] [PubMed]
  5. M. G. Muller, I. Georgakoudi, Q. G. Zhang, J. Wu, and M. S. Feld, "Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption," Appl. Opt. 40, 4633-4646 (2001). [CrossRef]
  6. R. Weersink, M. S. Patterson, K. Diamond, S. Silver, and N. Padgett, "Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence/reflectance ratio technique," Appl. Opt. 40, 6389-6395 (2001). [CrossRef]
  7. M. A. Arnold and G. W. Small, "Noninvasive glucose sensing," Anal. Chem. 77, 5429-5439 (2005). [CrossRef] [PubMed]
  8. G. L. Cote, R. M. Lec, and M. V. Pishko, "Emerging biomedical sensing technologies and their applications," IEEE Sens. J. 3, 251-266 (2003). [CrossRef]
  9. O. S. Khalil, "Spectroscopic and clinical aspects of noninvasive glucose measurements," Clin. Chem. 45, 165-177 (1999). [PubMed]
  10. K. R. Diamond, T. J. Farrell, and M. S. Patterson, "Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence," Phys. Med. Biol. 48, 4135-4149 (2003). [CrossRef]
  11. B. W. Pogue and G. Burke, "Fiber-optic bundle design for quantitative fluorescence measurement from tissue," Appl. Opt. 37, 7429-7436 (1998). [CrossRef]
  12. M. S. Patterson and B. W. Pogue, "Mathematical-model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissue," Appl. Opt. 33, 1963-1974 (1994). [CrossRef] [PubMed]
  13. N. C. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, "Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach," Opt. Express 11, 3320-3331 (2003). [CrossRef] [PubMed]
  14. J. C. Finlay and T. H. Foster, "Recovery of hemoglobin oxygen saturation and intrinsic fluorescence with a forward-adjoint model," Appl. Opt. 44, 1917-1933 (2005). [CrossRef] [PubMed]
  15. A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, "Raman spectroscopy for noninvasive glucose measurements," J. Biomed. Opt. 10, 031114 (2005). [CrossRef] [PubMed]
  16. W.-C. Shih, K. L. Bechtel, and M. S. Feld, "Constrained regularization: Hybrid method for multivariate calibration," Anal. Chem. 79, 234-239 (2007). [CrossRef]
  17. T. A. Nijhuis, S. J. Tinnemans, T. Visser, and B. M. Weckhuysen, "Operando spectroscopic investigation of supported metal oxide catalysts by combined time-resolved UV-VIS/Raman/on-line mass spectrometry," Phys. Chem. Chem. Phys. 5, 4361-4365 (2003). [CrossRef]
  18. P. J. Aarnoutse and J. A. Westerhuis, "Quantitative Raman reaction monitoring using the solvent as internal standard," Anal. Chem. 77, 1228-1236 (2005). [CrossRef] [PubMed]
  19. D. N. Waters, "Raman spectroscopy of powders - effects of light absorption and scattering," Spectrochim. Acta, Part A 50, 1833-1840 (1994). [CrossRef]
  20. S. Kuba, and H. Knozinger, "Time-resolved in situ Raman spectroscopy of working catalysts: sulfated and tungstated zirconia," J. Raman Spectrosc. 33, 325-332 (2002). [CrossRef]
  21. S. J. Tinnemans, M. H. F. Kox, T. A. Nijhuis, T. Visser, and B. M. Weckhuysen, "Real time quantitative Raman spectroscopy of supported metal oxide catalysts without the need of an internal standard," Phys. Chem. Chem. Phys. 7, 211-216 (2005). [CrossRef] [PubMed]
  22. V. V. Tuchin, Tissue optics: light scattering methods and instruments for medical diagnosis (SPIE Press, Bellingham, Wash., 2000).
  23. P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, "Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy," Appl. Spectrosc. 59, 393-400 (2005). [CrossRef] [PubMed]
  24. J. Wu, F. Partovi, M. S. Field, and R. P. Rava, "Diffuse reflectance from turbid media - an analytical model of photon migration," Appl. Opt. 32, 1115-1121 (1993). [CrossRef] [PubMed]
  25. A. Ishimaru, Wave propagation and scattering in random media (Academic Press, New York, 1978).
  26. G. Zonios and A. Dimou, "Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties," Opt. Express 14, 8661-8674 (2006). [CrossRef] [PubMed]
  27. W.-C. Shih, K. L. Bechtel, and M. S. Feld, "Intrinsic Raman spectroscopy improves analyte concentration measurements in turbid media," in Biomedical Optics, (Optical Society of America, 2006), p. MC7.
  28. M.-A. Mycek and B. W. Pogue, Handbook of biomedical fluorescence (Marcel Dekker, New York, NY, 2003).
  29. A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, "Propagation of fluorescent light," Lasers Surg. Med. 21, 166-178 (1997). [CrossRef] [PubMed]
  30. S. L. Jacques, "Diffuse reflectance from a semiinfinite medium," http://omlc.ogi.edu/news/may99/rd/index.html, (1999).
  31. F. Fabbri, M. A. Franceschini, and S. Fantini, "Characterization of spatial and temporal variations in the optical properties of tissuelike media with diffuse reflectance imaging," Appl. Opt. 42, 3063-3072 (2003). [CrossRef] [PubMed]
  32. G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, "Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo," Appl. Opt. 38, 6628-6637 (1999). [CrossRef]
  33. B. C. Wilson and S. L. Jacques, "Optical reflectance and transmittance of tissues - principles and applications," IEEE J. Quantum Electron. 26, 2186-2199 (1990). [CrossRef]
  34. A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, "Optical properties of circulating human blood in the wavelength range 400-2500 NM," J. Biomed. Opt. 4, 36-46 (1999). [CrossRef]
  35. T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992). [CrossRef] [PubMed]
  36. J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, "Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths," Appl. Opt. 40, 1155-1164 (2001). [CrossRef]
  37. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999). [CrossRef] [PubMed]
  38. M. G. Nichols, E. L. Hull, and T. H. Foster, "Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems," Appl. Opt. 36, 93-104 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited