OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 11 — Oct. 22, 2008

Dual-beam Fourier domain optical Doppler tomography of zebrafish

Nicusor V. Iftimia, Daniel X. Hammer, R. Daniel Ferguson, Mircea Mujat, Danthu Vu, and Anthony A. Ferrante  »View Author Affiliations


Optics Express, Vol. 16, Issue 18, pp. 13624-13636 (2008)
http://dx.doi.org/10.1364/OE.16.013624


View Full Text Article

Enhanced HTML    Acrobat PDF (3756 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a dual-beam Fourier domain optical Doppler tomography (FD-ODT) system to image zebrafish (Danio rerio) larvae. Two beams incident on the zebrafish with a fixed angular separation allow absolute blood flow velocity measurement to be made regardless of vessel orientation in a sagittal plane along which the heart and most of the major vasculature lie. Two spectrometers simultaneously acquire spectra from two interferometers with a typical (maximum) line rate of 18 (28) kHz. The system was calibrated using diluted milk and microspheres and a 0.5-mm thick flow cell. The average deviation from the set velocity from 1.4 to 34.6 mm/s was 4.1%. Three-dimensional structural raster videos were acquired of an entire fish, and through the head, heart, and upper tail of the fish. Coarse features that were resolved include the telencephalon, retina, both heart chambers (atrium and ventricle), branchial arches, and notochord. Other fine structures within these organs were also resolved. Zebrafish are an important tool for high-throughput screening of new pharmacological agents. The ability to generate high-resolution three-dimensional structural videos and accurately measure absolute flow rates in major vessels with FD-ODT provides researchers with additional metrics by which the efficacy of new drugs can be assessed.

© 2008 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 2, 2008
Revised Manuscript: August 4, 2008
Manuscript Accepted: August 4, 2008
Published: August 20, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Nicusor V. Iftimia, Daniel X. Hammer, R. D. Ferguson, Mircea Mujat, Danthu Vu, and Anthony A. Ferrante, "Dual-beam Fourier domain optical Doppler tomography of zebrafish," Opt. Express 16, 13624-13636 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-18-13624


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-25-3490. [CrossRef] [PubMed]
  2. D. Piao and Q. Zhu, "Quantifying Doppler Angle and Mapping Flow Velocity by a Combination of Doppler-Shift and Doppler-Bandwidth Measurements in Optical Doppler Tomography," Appl. Opt. 42, 5158 (2003). [CrossRef] [PubMed]
  3. S. G. Proskurin, Y. He, and R. K. Wang, "Determination of flow velocity vector based on Doppler shift and spectrum broadening with optical coherence tomography," Opt. Lett. 28, 1227-1229 (2000). [CrossRef]
  4. D. P. Davé and T. E. Milner, "Doppler-angle measurement in highly scattering media," Opt. Lett. 25, 1523-1525 (2000). [CrossRef]
  5. A. Røyset, T. Støren, F. Stabo-Eeg, and T. Lindmo, "Quantitative measurements of flow velocity and direction using transversal Doppler optical coherence tomography," Proc. SPIE 6079,607925 (2006). [CrossRef]
  6. C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, "Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography," Opt. Lett. 32, 506-508 (2007). [CrossRef] [PubMed]
  7. N. V. Iftimia, B. E. Bouma, and G. J. Tearney, "Speckle reduction in optical coherence tomography by path length encoded angular compounding," J. Biomed. Opt. 8, 260-263 (2003). [CrossRef] [PubMed]
  8. A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. D. Yang, "Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system," Opt. Express 15, 1627-1638 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-4-1627. [CrossRef] [PubMed]
  9. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, "Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser," Opt. Express 15, 6251-6267 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-10-6251. [CrossRef] [PubMed]
  10. Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000). [CrossRef]
  11. B. Park, M. C. Pierce, B. Cense, S. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 13, 3931-3944 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-11-3931. [CrossRef] [PubMed]
  12. T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, "Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array," Rev. Sci. Instrum.submitted.
  13. N. V. Iftimia, D. X. Hammer, C. E. Bigelow, D. I. Rosen, T. E. Ustun, A. A. Ferrante, D. Vu, and R. D. Ferguson, "Toward noninvasive measurement of blood hematocrit using spectral domain low coherence interferometry and retinal tracking," Opt. Express 14, 3377-3388 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3377. [CrossRef] [PubMed]
  14. M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Auto-calibration of spectral-domain optical coherence tomography spectrometers for in-vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. 12, 041205 (2007). [CrossRef] [PubMed]
  15. A. Nasevicius and S.C Ekker, "Effective targeted gene �??knockdown�?? in zebrafish," Nature Genetics 26, 216-220 (2000). [CrossRef] [PubMed]
  16. P. Goldsmith, "Zebrafish as a pharmacological tool: the how, why, and when," Curr. Opin. Pharma. 4, 504-512 (2004). [CrossRef] [PubMed]
  17. D. J. Milan, T. A. Peterson, J. N. Ruskin, R. T. Peterson, and C. A. MacRae, "Drugs that induce repolarization abnormalities cause bradycardia in zebrafish," Circulation 107, 1355-1358 (2003). [CrossRef] [PubMed]
  18. R. Kopp, T. Schwerte, and B. Pelster, "Cardiac performance in the zebrafish breakdance mutant" J. Exp. Biol. 208, 2123-2134 (2005). [CrossRef] [PubMed]
  19. D. X. Hammer, N. V. Iftimia, M. Mujat, R. D. Ferguson, D. Vu, A. A. Ferrante, and R. T. Peterson, "Blood flow and cardiac output measurements in zebrafish (Danio rerio) using dual-beam Fourier domain optical Doppler tomography," Circulation: Cardiovascular Imaging, submitted.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (4956 KB)      QuickTime
» Media 2: MOV (2812 KB)      QuickTime
» Media 3: MOV (4350 KB)      QuickTime
» Media 4: MOV (3248 KB)      QuickTime
» Media 5: MOV (1087 KB)      QuickTime
» Media 6: MOV (1040 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited