OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 11 — Oct. 22, 2008

Reconstructing subsurface electrical wave orientation from cardiac epi-fluorescence recordings: Monte Carlo versus diffusion approximation

Christopher J. Hyatt, Christian W. Zemlin, Rebecca M. Smith, Arvydas Matiukas, Arkady M. Pertsov, and Olivier Bernus  »View Author Affiliations


Optics Express, Vol. 16, Issue 18, pp. 13758-15772 (2008)
http://dx.doi.org/10.1364/OE.16.013758


View Full Text Article

Enhanced HTML    Acrobat PDF (1780 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The development of voltage-sensitive dyes has revolutionized cardiac electrophysiology and made optical imaging of cardiac electrical activity possible. Photon diffusion models coupled to electrical excitation models have been successful in qualitatively predicting the shape of the optical action potential and its dependence on subsurface electrical wave orientation. However, the accuracy of the diffusion equation in the visible range, especially for thin tissue preparations, remains unclear. Here, we compare diffusion and Monte Carlo (MC) based models and we investigate the role of tissue thickness. All computational results are compared to experimental data obtained from intact guinea pig hearts. We show that the subsurface volume contributing to the epi-fluorescence signal extends deeper in the tissue when using MC models, resulting in longer optical upstroke durations which are in better agreement with experiments. The optical upstroke morphology, however, strongly correlates to the subsurface propagation direction independent of the model and is consistent with our experimental observations.

© 2008 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 26, 2008
Revised Manuscript: August 11, 2008
Manuscript Accepted: August 18, 2008
Published: August 21, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Christopher J. Hyatt, Christian W. Zemlin, Rebecca M. Smith, Arvydas Matiukas, Arkady M. Pertsov, and Olivier Bernus, "Reconstructing subsurface electrical wave orientation from cardiac epi-fluorescence recordings: Monte Carlo versus diffusion approximation," Opt. Express 16, 13758-15772 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-18-13758


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Streeter, Handbook of Physiology, (Bethesda, MD, American Physiological Society, 1979).
  2. R. A. Gray, A. M. Pertsov and J. Jalife, "Spatial and temporal organization during cardiac fibrillation," Nature 392, 75-78 (1998). [CrossRef] [PubMed]
  3. O. Bernus, M. Wellner and A. M. Pertsov, "Intramural wave propagation in cardiac tissue: asymptotic solutions and cusp waves," Phys. Rev. E 70, 061913 (2004).
  4. F. Fenton and A. Karma, "Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation," Chaos 8, 20-47 (1998). [CrossRef]
  5. K. H. J. W. Ten Tusscher, R. Hren and A. V. Panfilov, "Organization of ventricular fibrillation in the human heart," Circ. Res. 100, e87-e101 (2007). [CrossRef] [PubMed]
  6. D. S. Rosenbaum and J. Jalife, Optical mapping of Cardiac excitation and arrhythmias, (Armonk, N Y, Futura Publishing Company, Inc. 2001).
  7. I. R. Efimov, V. P. Nikolski and G. Salama, "Optical imaging of the heart," Circ. Res. 95, 21-33 (2004). [CrossRef] [PubMed]
  8. V. D. Khait, O. Bernus, S. Mironov and A. M. Pertsov, "Method for the three-dimensional localization of intramyocardial excitation centers using optical imaging," J. Biomed. Opt. 11, 34007 (2006). [CrossRef] [PubMed]
  9. M. Wellner, O. Bernus, S. F. Mironov and A. M. Pertsov, "Multiplicative optical tomography of cardiac electrical activity," Phys. Med. Biol. 51, 4429-46 (2006). [CrossRef] [PubMed]
  10. E. M. C. Hillman, O. Bernus, E. Pease, M. B. Bouchard and A. M. Pertsov, "Depth-resolved optical imaging of transmural electrical propagation in perfused heart," Opt. Express 15, 17827-17841 (2007). [CrossRef]
  11. S. D. Girouard, K. R. Laurita, and D. S. Rosenbaum, "Unique properties of cardiac action potentials recorded with voltage-sensitive dyes," J. Cardiovasc. Electrophysiol. 7, 1024-1038 (1996). [CrossRef] [PubMed]
  12. W. Baxter, S. F. Mironov, A. V. Zaitsev, A. M. Pertsov and J. Jalife, "Visualizing excitation waves in cardiac muscle using transillumination," Biophys. J. 80, 516-530 (2001). [CrossRef] [PubMed]
  13. L. Ding, R. Splinter and S. B. Knisley, "Quantifying spatial localization of optical mapping using Monte Carlo simulations," IEEE Trans. Biomed. Eng. 48, 1098-1107 (2001). [CrossRef] [PubMed]
  14. D. L. Janks and B. J. Roth, "Averaging over depth during optical mapping of unipolar stimulation," IEEE Trans. Biomed. Eng. 49, 1051-1054 (2002). [CrossRef] [PubMed]
  15. M. A. Bray and J. P. Wikswo, "Examination of optical depth effects on fluorescence imaging of cardiac propagation," Biophys. J. 85, 4134-4145 (2003). [CrossRef] [PubMed]
  16. C. J. Hyatt, S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife and A. M. Pertsov, "Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns," Biophys. J. 85, 2673-2683 (2003). [CrossRef] [PubMed]
  17. C. J. Hyatt, S. F. Mironov, F. J. Vetter, C. W. Zemlin and A. M. Pertsov, "Optical action potential upstroke morphology reveals near-surface transmural propagation direction," Circ. Res. 97, 277-284 (2005). [CrossRef] [PubMed]
  18. C.W. Zemlin, O. Bernus, A. Matiukas, C. J. Hyatt and A. M. Pertsov, "Extracting Intramural Wavefront Orientation from Optical Upstroke Shapes in Whole Hearts," Biophys. J. 95, 942-950 (2008). [CrossRef] [PubMed]
  19. M. J. Bishop, G. Bub, A. Garny, D. J. Gavaghan and B. Rodriguez, "An investigation into the role of the optical detection set-up in the recording of cardiac optical mapping signals: A Monte Carlo simulation study," Physica D (to be published).
  20. O. Bernus, M. Wellner, S. F. Mironov and A. M. Pertsov, "Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods," Phys. Med. Biol. 50, 215-229 (2005). [CrossRef] [PubMed]
  21. M. J. Bishop, B. Rodriguez, J. Eason, J. P. Whiteley, N. Trayanova, and D. J. Gavaghan, "Synthesis of voltage-sensitive optical signals: application to panoramic optical mapping," Biophys. J. 90, 2938-2945 (2006). [CrossRef] [PubMed]
  22. G. M. Faber and Y. Rudy, "Action potential and contractility changes in Na+i overloaded cardiac myocytes: a simulation study," Biophys. J. 78, 2392-2404 (2000). [CrossRef] [PubMed]
  23. O. Bernus, K. S. Mukund and A. M. Pertsov, "Detection of intramyocardial scroll waves using absorptive transillumination imaging," J. Biomed. Opt. 12, 14035 (2007). [CrossRef]
  24. R. Zaritsky and A. M. Pertsov, "Simulation of 2-D spiral wave interactions on a Pentium-based cluster," in Proc. of Neural, Parallel, and Scientific Computations, M. P. Bekakos, G. S. Ladde, N. G. Medhin, and M. Sambandham, eds., (Dynamic Publisher, Atlanta, 2002).
  25. L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, "MCML - Monte Carlo modeling of photon transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  26. L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, "CONV - Convolution for responses to a finite diameter photon beam incident on multilayered tissues," Comput. Methods Programs Biomed. 54, 141-150 (1997). [CrossRef]
  27. S. T. Flock, M. S. Patterson, B. C. Wilson and D. R. Wyman, "Monte Carlo modeling of light propagation in highly scattering tissues - I: model predictions and comparison with diffusion theory," IEEE Trans. Biomed. Eng. 36, 1162-1168 (1989). [CrossRef] [PubMed]
  28. B. J. Roth, "Photon density measured over a cut surface: implications for optical mapping of the heart," IEEE Trans. Biomed. Eng. 55, 2102-2104 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited