OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 11 — Oct. 22, 2008

Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit

Shusen Liu, Pengcheng Li, and Qingming Luo  »View Author Affiliations


Optics Express, Vol. 16, Issue 19, pp. 14321-14329 (2008)
http://dx.doi.org/10.1364/OE.16.014321


View Full Text Article

Enhanced HTML    Acrobat PDF (2436 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser speckle contrast analysis (LASCA) is a non-invasive, full-field optical technique that produces two-dimensional map of blood flow in biological tissue by analyzing speckle images captured by CCD camera. Due to the heavy computation required for speckle contrast analysis, video frame rate visualization of blood flow which is essentially important for medical usage is hardly achieved for the high-resolution image data by using the CPU (Central Processing Unit) of an ordinary PC (Personal Computer). In this paper, we introduced GPU (Graphics Processing Unit) into our data processing framework of laser speckle contrast imaging to achieve fast and high-resolution blood flow visualization on PCs by exploiting the high floating-point processing power of commodity graphics hardware. By using GPU, a 12-60 fold performance enhancement is obtained in comparison to the optimized CPU implementations.

© 2008 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(110.6150) Imaging systems : Speckle imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6480) Medical optics and biotechnology : Spectroscopy, speckle

ToC Category:
Image Processing

History
Original Manuscript: May 6, 2008
Revised Manuscript: July 20, 2008
Manuscript Accepted: July 31, 2008
Published: August 29, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Shusen Liu, Pengcheng Li, and Qingming Luo, "Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit," Opt. Express 16, 14321-14329 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-19-14321


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Owens, "A Survey of General-Purpose Computation on Graphics Hardware," Comput. Graph. Forum 26, 80-113 (2007). [CrossRef]
  2. A. Lefohn, J. Kniss, C. Hansen, and R. Whitaker, "A Streaming Narrow-Band Algorithm: Interactive Deformation and Visualization of Level Sets," IEEE T. Vis. Comput. Gr. 10, 422-433 (2004). [CrossRef]
  3. J. Krüger and R. Westermann, "Linear algebra operators for GPU implementation of numerical algorithms," ACM T.Graphic 22, 908-916 (2003). [CrossRef]
  4. J. Bolz, I. Farmer, E. Grinspun, and P. Schrooder, "Sparse matrix solvers on the GPU: conjugate gradients and multi-grid," ACM. T.Graphic 22, 917-924 (2003). [CrossRef]
  5. S. F. Portegies Zwart, R. G. Belleman, and P. Geldof, "High-performance direct gravitational N-body simulations on graphics processing units," New Astron. 12, 641-650 (2007). [CrossRef]
  6. J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, and K. Schulten, "Accelerating molecular modeling applications with graphics processors," J Comput. Chem. 28, 2618-2640 (2007). [CrossRef] [PubMed]
  7. J. S. Kole and K. J. Beekman, "Evaluation of accelerated iterative X-ray CT image reconstruction using floating point graphics hardware," Phys. Med. Biol. 51, 875-889(2006). [CrossRef] [PubMed]
  8. S. Zhang, D. Royer, and S. Yau, "GPU-assisted high-resolution, real-time 3-D shape measurement," Opt. Express 14, 9120-9129 (2006). [CrossRef] [PubMed]
  9. M. Pharr, ed., PU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation (Gpu Gems) (Addison-Wesley, New York, 2005). [PubMed]
  10. I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan, "Brook for GPUs: Stream computing on graphics hardware," ACM. T.Graphic. 23, 777-786 (2004). [CrossRef]
  11. NVIDIA CUDA Compute Unified Device Architecture programming guide version 1.1, (NVIDIA corp. 2007).
  12. J. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a non-scanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1,174-179 (1996). [CrossRef]
  13. A. Dunn, H. Bolay, M. Moskowitz, and D. Boas, "Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001). [CrossRef] [PubMed]
  14. J. W. Goodman, Statistical Optics (Wiley-Interscience, 1985).
  15. H. Cheng and T. Duong, "Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging", Opt. Lett. 32, 2188-2190 (2007). [CrossRef] [PubMed]
  16. J. Ramirez-San-Juan, R. Ramos-Garcia, I. Guizar-Iturbide, G. Martinez-Niconoff, and B. Choi, "Impact of velocity distribution assumption on simplified laser speckle imaging equation," Opt. Express 16, 3197-3203 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited