OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 11 — Oct. 22, 2008

Probing dielectric interfaces on the nanoscale with elastic scattering patterns of single gold nanorods

Tina Züchner, Antonio Virgilio Failla, Mathias Steiner, and Alfred J. Meixner  »View Author Affiliations

Optics Express, Vol. 16, Issue 19, pp. 14635-14644 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1177 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study spatially isolated, individual gold nanorods placed at a planar interface between two dielectric media using confocal interference scattering microscopy in combination with higher order laser modes. Approaching refractive index matching conditions, we observe that the elastic scattering patterns of individual nanorods exhibit an exponential increase of both the scattering intensity and the signal-to-background ratio. In case refractive index matching conditions are fullfilled, the data acquisition rates are maximized and suitable for in-vivo biological measurements. In all cases, the characteristic two-lobe shape of the scattering patterns of single nanorods remains unchanged while the sign of the image contrast is a direct consequence of the refractive index variation occurring at the interface.

© 2008 Optical Society of America

OCIS Codes
(180.0180) Microscopy : Microscopy
(180.1790) Microscopy : Confocal microscopy
(180.3170) Microscopy : Interference microscopy
(290.5850) Scattering : Scattering, particles

ToC Category:

Original Manuscript: June 10, 2008
Revised Manuscript: July 24, 2008
Manuscript Accepted: July 24, 2008
Published: September 3, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Tina Züchner, Antonio Virgilio Failla, Mathias Steiner, and Alfred J. Meixner, "Probing dielectric interfaces on the nanoscale with elastic scattering patterns of single gold nanorods," Opt. Express 16, 14635-14644 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002). [CrossRef] [PubMed]
  2. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005). [CrossRef]
  3. T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, "Tomographic plasmon spectroscopy of a single gold nanoparticle," Nano Lett. 4, 2309-2314 (2004). [CrossRef]
  4. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. 116, 6755-6758 (2002). [CrossRef]
  5. K.-S. Lee and M. A. El-Sayed, "Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition," J. Phys. Chem. B 110, 19220-19225 (2006). [CrossRef] [PubMed]
  6. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine," J. Phys. Chem. B 110, 7238-7248 (2006). [CrossRef] [PubMed]
  7. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003). [CrossRef]
  8. F. Tam, C. Moran, and N. Halas, "Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment," J. Phys. Chem. B 108, 17290-17294 (2004). [CrossRef]
  9. M. Steiner, C. Debus, A. V. Failla, and A. J. Meixner, "Plasmon-enhanced emission in gold nanoparticle aggregates," J. Phys. Chem. C 112, 3103-3108 (2008). [CrossRef]
  10. A. Curry, G. Nusz, A. Chilkoti, and A. Wax, "Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microspectroscopy," Opt. Express 13, 2668-2677 (2005). [CrossRef] [PubMed]
  11. J. J. Mock, D. R. Smith, and S. Schult, "Local refractive index dependence of plasmon resonance spectra from individual nanoparticles," Nano Lett. 3, 485-491 (2003). [CrossRef]
  12. D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, "Multiphoton plasmon-resonance microscopy," Opt. Express 11, 1385-1391 (2003). [CrossRef] [PubMed]
  13. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," J. Am. Chem. Soc. 128, 2115-2120 (2006). [CrossRef] [PubMed]
  14. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, "In vitro and in vivo two-photon luminescence imaging of single gold nanorods," PNAS 102, 15752-15756 (2005). [CrossRef] [PubMed]
  15. H. Hess and Y. Tseng, "Active intracellular transport of nanoparticles: Opportunity or threat?" ACS Nano 1, 390-392 (2007). [CrossRef] [PubMed]
  16. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nature Biotech. 23, 741-745 (2005). [CrossRef]
  17. G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935-938 (2003). [CrossRef]
  18. K. J. Lee, P. D. Nallathamby, L. M. Browning, C. J. Osgood, and X. -H. N. Xu, "In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos," ACS Nano 1, 133-143 (2007). [CrossRef] [PubMed]
  19. S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," PNAS 97, 996-1001 (2000). [CrossRef] [PubMed]
  20. M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 1154331-11543310 (2003). [CrossRef]
  21. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett,  96, 113002 (2006).
  22. C. J. Orendorff, L. Gearheart, N. R. Jana, and C. J. Murphy, "Aspect ratio dependence on surface enhanced raman scattering using silver and gold nanorod substrates," Phys. Chem. Chem. Phys. 8, 165-170 (2006). [CrossRef] [PubMed]
  23. F. V. Ignatovich, A. Hartschuh, and L. Novotny, "Detection of nanoparticles using optical gradient forces," J. Mod. Opt. 50, 1509-1520 (2003).
  24. V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar, "Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface," Opt. Express 14, 405-414 (2006). [CrossRef] [PubMed]
  25. O. L. Muskens, N. Del Fatti, F. Vallée, J. R. Huntzinger, P. Billaud, and M. Broyer, "Single metal nanoparticle absorption spectroscopy and optical characterization," Appl. Phys. Lett. 88, 063109 (2006). [CrossRef]
  26. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal imaging of nanometer-sized metal particles among scatterers," Science 297, 1160-1163 (2002). [CrossRef] [PubMed]
  27. S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, "Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals," Phys. Rev. Lett. 93, 257402-257406 (2004). [CrossRef]
  28. A.V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano Lett. 6, 1374-1378 (2006). [CrossRef] [PubMed]
  29. C. J. R. Sheppard and D. M. Shotton, Confocal Laser Scanning Microscopy (Bios Scientific Publishers, London, 1997).
  30. C. J. R. Sheppard and Y. Gong, "Improvement in axial resolution by interference confocal microscopy," Optik 87, 129-132 (1991).
  31. T. Züchner, A. V. Failla, A. Hartschuh, and A. J. Meixner, "A novel approach to detect and characterize the scattering patterns of single Au-nanoparticles using confocal microscopy," J. Microsc. 229, 337-343 (2008). [CrossRef] [PubMed]
  32. A. V. Failla, S. W. Jäger, T. Züchner, M. Steiner, and A. J. Meixner, "Topology measurements of metal nanoparticles with 1 nm accuracy by confocal interference scattering microscopy," Opt. Express 15, 8532-8542 (2007). [CrossRef] [PubMed]
  33. S. Link, M. B. Mohamed, and M. A. El-Sayed, "Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant," J. Phys. Chem. B 103, 3073-3077 (1999). [CrossRef]
  34. B. Nikoobakht and M. A. El-Sayed, "Preparation and growth mechanism of gold nanorods (NRs) using seedmediated growth method," Chem. Mater. 15, 1957-1962 (2003). [CrossRef]
  35. B. Nikoobakht and M. A. El-Sayed, "Evidence for Bilayer Assembly of Cationic Surfactants on The Surface of Gold Nanorods," Langmuir 17, 6368-6374 (2001). [CrossRef]
  36. G. Mie, "Beiträge zur optik trüber medien, speziell kolloidaler metallösungen," Ann. Phys. 25, 377-445 (1908). [CrossRef]
  37. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (JohnWiley & Sons, New York, 1983).
  38. M. Born and E. Wolf. Principles of optics (Pergamon Pr., Oxford,1964).
  39. S. Martin, A. V. Failla, U. Spöri, C. Cremer, and A. Pombo, "Measuring the Size of Biological Nanostructures with Spatially Modulated Illumination Microscopy," Mol. Biol. Cell. 15, 2449-2455 (2004). [CrossRef] [PubMed]
  40. E. J. Botcherby, R. Ju¡skaitis, M. J. Booth, and T. Wilson, "Aberration-free optical refocusing in high numerical aperture microscopy," Opt. Lett. 32, 2007-2009 (2007). [CrossRef] [PubMed]
  41. I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro. "WSXM: A software for scanning probe microscopy and a tool for nanotechnology." Rev. Sci. Instrum.,  78, 013705-8 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited