OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 11 — Oct. 22, 2008

Detection of ultrasound-modulated diffuse photons using spectral-hole burning

Youzhi Li, Philip Hemmer, Chulhong Kim, Huiliang Zhang, and Lihong V. Wang  »View Author Affiliations

Optics Express, Vol. 16, Issue 19, pp. 14862-14874 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (978 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The lack of efficient detection techniques has so far prevented ultrasound-modulated optical tomography from achieving maturity. By applying a quantum spectral filter based on spectral-hole burning, one modulation sideband of the ultrasound-modulated diffuse photons can be efficiently selected while the DC and the other sidebands are blocked. This technique features a large etendue as well as the capability of processing numerous speckles in parallel. It is also immune to speckle decorrelation, potentially allowing real-time in vivo imaging. Both theory and experiments are presented.

© 2008 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(160.5690) Materials : Rare-earth-doped materials
(170.6960) Medical optics and biotechnology : Tomography
(270.1670) Quantum optics : Coherent optical effects
(110.0113) Imaging systems : Imaging through turbid media
(170.1065) Medical optics and biotechnology : Acousto-optics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 19, 2008
Revised Manuscript: August 8, 2008
Manuscript Accepted: August 10, 2008
Published: September 5, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Youzhi Li, Philip Hemmer, Chulhong Kim, Huiliang Zhang, and Lihong V. Wang, "Detection of ultrasound-modulated diffuse photons using spectral-hole burning," Opt. Express 16, 14862-14874 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. F. Jöbsis, "Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters," Science 198, 1264-1267 (1977). [CrossRef] [PubMed]
  2. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, "Imaging the body with diffuse optical tomography," IEEE Sig. Proc. 18, 57-75 (2001). [CrossRef]
  3. L. V. Wang, S. L. Jacques, and X. Zhao, "Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media," Opt. Lett. 20, 629-631 (1995). [CrossRef] [PubMed]
  4. M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, "Acousto-optic tomography with multuply scattered light," J. Opt. Soc. Am. A 14, 1151-1158 (1997). [CrossRef]
  5. L. V. Wang, "Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model," Opt. Lett. 26, 1191-1193 (2001). [CrossRef]
  6. L. V. Wang, "Mechanisms of Ultrasonic Modulation of Multiply Scattered Coherent Light: An Analytic Model," Phys. Rev. Lett. 87, 043903 (2001). [CrossRef] [PubMed]
  7. L. V. Wang and G. Ku, "Frequency-swept ultrasound-modulated optical tomography of scattering media," Opt. Lett. 23, 975-977 (1998). [CrossRef]
  8. A. Lev and B. G. Sfez, "Pulsed ultrasound-modulated light tomography," Opt. Lett. 28, 1549-1551 (2003). [CrossRef] [PubMed]
  9. W. Leutz and G. Maret, "Ultrasonic modulation of multiply scattered light," Physica B 204, 14-19 (1995). [CrossRef]
  10. S. Sakadži?? and L. V. Wang, "High-resolution ultrasound-modulated optical tomography in biological tissues," Opt. Lett. 29, 2770-2772 (2004). [CrossRef] [PubMed]
  11. S. Lévêque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, "Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing," Opt. Lett. 24, 181-183 (1999). [CrossRef]
  12. T. W. Murray, L. Sui, G. Maguluri, R. A. Roy, A. Nieva, F. Blonigen, and C. A. DiMarzio, "Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect," Opt. Lett. 29, 2509-2511 (2004). [CrossRef] [PubMed]
  13. F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, "Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues," Opt. Express 12, 5469-5474 (2004). [CrossRef] [PubMed]
  14. M. Gross, F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, P. Delaye, and G. Roosen, "Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media," Opt. Express 13, 7097-7112 (2005). [CrossRef] [PubMed]
  15. L. Sui, R. A. Roy, C. A. DiMarzio, and T. W. Murray, "Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect," Appl. Opt. 44, 4041-4048 (2005). [CrossRef] [PubMed]
  16. X. Xu, H. Zhang, P. Hemmer, D.-k. Qing, C. Kim, and L. V. Wang, "Photorefractive detection of tissue optical and mechanical properties by ultrasound modulated optical tomography," Opt. Lett. 32, 656-658 (2007). [CrossRef] [PubMed]
  17. M. Lesaffre, F. Jean, F. Ramaz, A. C. Boccara, P. Delaye, and G. Roosen, "In situ monitoring of the photorefractive response time in a self-adaptive holography setup developed for acousto-optic imaging," Opt. Express 15, 1030-1042 (2007). [CrossRef] [PubMed]
  18. Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, "Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter," Appl. Phys. Lett. 93, 011111 (2008). [CrossRef]
  19. T. M. Mossberg, "Time-domain frequency-selective optical storage," Opt. Lett. 7, 77-79 (1982). [CrossRef] [PubMed]
  20. L. Ménager, I. Lorgeré, J.-L. Le-Gouët, D. Dolfi, and J.-P. Huignard, "Demonstration of a radio-frequency spectrumanalyzer based on spectral hole burning," Opt. Lett. 26, 1245-1247 (2001). [CrossRef]
  21. Y. Li, A. Hoskins, F. Schlottau, K. H. Wagner, C. Embry, and W. R. Babbitt, "Ultrawideband coherent noise lidar range-Doppler imaging and signal processing by use of spatial-spectral holography in inhomogeneously broadened absorbers," Appl. Opt. 45, 6409-6420 (2006). [CrossRef] [PubMed]
  22. L. Allen and J. H. Eberly, Optical resonance and two-level atoms (Dover Publications, Inc., New York, 1987).
  23. M. Mitsunaga and R. G. Brewer, "Generalized perturbation theory of coherent optical emission," Phys. Rev. A 32, 1605-1613 (1985). [CrossRef] [PubMed]
  24. M. Colice, F. Schlottau, and K. H. Wagner, "Broadband radio-frequency spectrum analysis in spectral-hole-burning media," Appl. Opt. 45, 6393-6408 (2006). [CrossRef] [PubMed]
  25. P. Meystre and M. S. III, Elements of Quantum Optics, 3 ed. (Springer-Verlag Berlin Heidelberg, New York, 1999).
  26. F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, "A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination," Proc. SPIE 1888, 500-510 (1993). [CrossRef]
  27. M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, "Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection," Opt. Lett. 30, 1360-1362 (2005). [CrossRef] [PubMed]
  28. M. H. Hayes, Statistical digital signal processing and modeling (John Wiley & Sons, Inc., New York, 1996).
  29. D. Dalecki, "Mechanical bioeffects of ultrasound," Annu. Rev. Biomed. Eng. 6, 229-248 (2004). [CrossRef] [PubMed]
  30. P. C. D. Hobbs, "Ultrasensitive laser measurements without tears," Appl. Opt. 36, 903-920 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited