OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 11 — Oct. 22, 2008

Optical recording of electrical activity in intact neuronal networks with random access second-harmonic generation microscopy

Leonardo Sacconi, Jonathan Mapelli, Daniela Gandolfi, Jacopo Lotti, Rodney P. O’Connor, Egidio D’Angelo, and Francesco S. Pavone  »View Author Affiliations


Optics Express, Vol. 16, Issue 19, pp. 14910-14921 (2008)
http://dx.doi.org/10.1364/OE.16.014910


View Full Text Article

Enhanced HTML    Acrobat PDF (537 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

One of the main challenges in understanding the central nervous system is to measure the network dynamics of neuronal assemblies, while preserving the computational role of individual neurons. However, this is not possible with current techniques. In this work, we combined the advantages of second-harmonic generation (SHG) with a random access (RA) excitation scheme to realize a new microscope (RASH) capable of optically recording fast membrane potential events occurring in a wide-field of view. The RASH microscope, in combination with bulk loading of tissue with FM4-64 dye, was used to simultaneously record electrical activity from clusters of Purkinje cells in acute cerebellar slices. Complex spikes, both synchronous and asynchronous, were optically recorded simultaneously across a given population of neurons. Spontaneous electrical activity was also monitored simultaneously in pairs of neurons, where action potentials were recorded without averaging across trials. These results show the strength of this technique in describing the temporal dynamics of neuronal assemblies, opening promising perspectives in understanding the computations of neuronal networks.

© 2008 Optical Society of America

OCIS Codes
(170.1420) Medical optics and biotechnology : Biology
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: July 24, 2008
Revised Manuscript: September 3, 2008
Manuscript Accepted: September 3, 2008
Published: September 8, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Leonardo Sacconi, Jonathan Mapelli, Daniela Gandolfi, Jacopo Lotti, Rodney P. O'Connor, Egidio D'Angelo, and Francesco S. Pavone, "Optical recording of electrical activity in intact neuronal networks with random access second-harmonic generation microscopy," Opt. Express 16, 14910-14921 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-19-14910


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Grinvald and R. Hildesheim, "VSDI: a new era in functional imaging of cortical dynamics," Nat. Rev. Neurosci. 5, 874-885 (2004). [CrossRef] [PubMed]
  2. M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen,Y. W. Lam, S. Antic, and D. Zecevic, "Imaging membrane potential with voltage-sensitive dyes," Biol. Bull. 198, 1-21 (2000). [CrossRef] [PubMed]
  3. S. D. Antic, "Action potentials in basal and oblique dendrites of rat neocortical pyramidal neurons," J. Physiol. 550, 35-50 (2003). [CrossRef] [PubMed]
  4. J. E. Gonzalez and R. Y. Tsien, "Improved indicators of cell membrane potential that use fluorescence resonance energy transfer," Chem. Biol. 4, 269-277 (1997). [CrossRef] [PubMed]
  5. T. Knopfel, K. Tomita, R. Shimazaki, and R. Sakai, "Optical recordings of membrane potential using genetically targeted voltage-sensitive fluorescent proteins," Methods 30, 42-48 (2003). [CrossRef] [PubMed]
  6. M. S. Siegel and E. Y. Isacoff, "A genetically encoded optical probe of membrane voltage," Neuron 19, 735-741 (1997). [CrossRef] [PubMed]
  7. R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld, "Noninvasive detection of changes in membrane potential in cultured neurons by light scattering," Proc. Natl. Acad. Sci. U S A 88, 9382-9386 (1991). [CrossRef] [PubMed]
  8. F. Helmchen and W. Denk, "Deep tissue two-photon microscopy," Nat. Methods 2, 932-940 (2005). [CrossRef] [PubMed]
  9. W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences" Nat. Biotechnol. 21, 1369-1377 (2003). [CrossRef] [PubMed]
  10. J. A. Fisher, J. R. Barchi, C. G. Welle, G. H. Kim, P. Kosterin, A. L. Obaid, A. G. Yodh, D. Contreras, and B. M. Salzberg, "Two-photon excitation of potentiometric probes enables optical recording of action potentials from mammalian nerve terminals in situ," J. Neurophysiol. 99, 1545-53 (2008). [CrossRef] [PubMed]
  11. P. J. Campagnola and L. M. Loew, "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotechnol. 21, 1356-60 (2003). [CrossRef] [PubMed]
  12. L. Moreaux, O. Sandre, M. Blanchard-Desce, and J. Mertz, "Membrane imaging by simultaneous second harmonic generation and two photon microscopy," Opt. Lett. 25, 320-322 (2000). [CrossRef]
  13. O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, and L. M. Loew, "Probing membrane potential with non-linear optics," Biophys. J. 65, 672-679 (1993). [CrossRef] [PubMed]
  14. T. Pons, L. Moreaux, O. Mongin, M. Blanchard-Desce, and J. Mertz, "Mechanics of membrane potential sensing with second-harmonic generation micrsocopy," J. Biomed. Opt. 8, 428-431 (2003). [CrossRef] [PubMed]
  15. D. A. Dombeck, M. Blanchard-Desce, and W. W. Webb, "Optical recording of action potentials with second-harmonic generation microscopy," J. Neurosci. 24, 999-1003 (2004). [CrossRef] [PubMed]
  16. L. Sacconi, D. A. Dombeck, and W. W. Webb, "Overcoming photodamage in second-harmonic generation microscopy: real-time optical recording of neuronal action potentials," Proc. Natl. Acad. Sci. U S A 103, 3124-3129 (2006). [CrossRef] [PubMed]
  17. D. A. Dombeck, L. Sacconi, M. Blanchard-Desce, and W. W. Webb, "Optical recording of fast neuronal membrane potential transients in acute mammalian brain slices by second-harmonic generation microscopy," J. Neurophysiol. 94, 3628-3636 (2005). [CrossRef] [PubMed]
  18. M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, "Imaging membrane potential in dendritic spines," Proc. Natl. Acad. Sci. U S A 103, 786-790 (2006). [CrossRef] [PubMed]
  19. A. Bullen, S. S. Patel, and P. Saggau, "High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators," Biophys. J. 73, 477-491 (1997). [CrossRef] [PubMed]
  20. R. Salome, Y. Kremer, S. Dieudonne, J. F. Leger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, "Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors," J. Neurosci. Methods 154, 161-174 (2006). [CrossRef] [PubMed]
  21. V. Iyer, T. M. Hoogland, and P. Saggau, "Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy," J. Neurophysiol. 95, 535-545 (2006). [CrossRef]
  22. J. C. Eccles, "The cerebellum as a computer: patterns in space and time," J. Physiol. 229, 1-32 (1969).
  23. D. Marr, "A theory of cerebellar cortex," J. Physiol. 202, 437-470 (1969).
  24. J. Mapelli and E. D'Angelo, "The spatial organization of long-term synaptic plasticity at the input stage of cerebellum," J. Neurosci. 27, 1285-1296 (2007). [CrossRef] [PubMed]
  25. R. Llinas and M. Sugimori, "Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices," J. Physiol. 305, 197-213 (1980). [PubMed]
  26. R. Llinas and M. Sugimori, "Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices," J. Physiol. 305, 171-195 (1980). [PubMed]
  27. L. Moreaux, O. Sandre, M. Blanchard-Desce, and J. Mertz, "Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy," Opt. Lett. 25, 320-322 (2000). [CrossRef]
  28. S. L. Palay and V. Chan-Palay, Cerebellar Cortex: Cytology and organization (Berlin, Springer-Verlag 1974).
  29. J. C. Eccles, M. Ito, and J. Szentagothai, The cerebellum as a neuronal machine (Berlin, Springer-Verlag 1967).
  30. H. Nishiyama and D. J. Linden, "Differential maturation of climbing fiber innervation in cerebellar vermis," J. Neurosci. 24, 3926-3932 (2004). [CrossRef] [PubMed]
  31. T. Z. Teisseyre, A. C. Millard, P. Yan, J. P. Wuskell, M. D. Wei, A. Lewis, and L. M. Loew, "Nonlinear optical potentiometric dyes optimized for imaging with 1064-nm light," J. Biomed. Opt. 12, 044001 (2007). [CrossRef] [PubMed]
  32. N. Ji, J. C. Magee, and E. Betzig, "High-speed, low-photodamage nonlinear imaging using passive pulse splitters," Nat. Methods 5, 197-202 (2008). [CrossRef] [PubMed]
  33. U. Egert, D. Heck, and A. Aertsen, "Two-dimensional monitoring of spiking networks in acute brain slices," Exp. Brain Res. 142, 268-274 (2002). [CrossRef] [PubMed]
  34. G. D. Reddy and P. Saggau, "Fast three-dimensional laser scanning scheme using acousto-optic deflectors," J. Biomed. Opt. 10, 064038 (2005). [CrossRef]
  35. S. Shoham, D. H. O'Connor, and R. Segev, "How silent is the brain: is there a "dark matter" problem in neuroscience?," J. Comp. Physiol. A Neuropathol. Sens. Neural Behav. Physiol. 192, 777-784 (2006). [CrossRef]
  36. V. Nikolenko, K. E. Poskanzer, and R. Yuste, "Two-photon photostimulation and imaging of neural circuits," Nat. Methods 4, 943-950 (2007). [CrossRef] [PubMed]
  37. E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, "Millisecond-timescale, genetically targeted optical control of neural activity," Nat. Neurosci. 8, 1263-1268 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited