OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 11 — Oct. 22, 2008

The application of Fresnel zone plate based projection in optofluidic microscopy

Jigang Wu, Xiquan Cui, Lap Man Lee, and Changhuei Yang  »View Author Affiliations

Optics Express, Vol. 16, Issue 20, pp. 15595-15602 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (306 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optofluidic microscopy (OFM) is a novel technique for low-cost, high-resolution on-chip microscopy imaging. In this paper we report the use of the Fresnel zone plate (FZP) based projection in OFM as a cost-effective and compact means for projecting the transmission through an OFM’s aperture array onto a sensor grid. We demonstrate this approach by employing a FZP (diameter=255 µm, focal length=800 µm) that has been patterned onto a glass slide to project the transmission from an array of apertures (diameter=1 µm, separation=10 µm) onto a CMOS sensor. We are able to resolve the contributions from 44 apertures on the sensor under the illumination from a HeNe laser (wavelength=633 nm). The imaging quality of the FZP determines the effective field-of-view (related to the number of resolvable transmissions from apertures) but not the image resolution of such an OFM system - a key distinction from conventional microscope systems. We demonstrate the capability of the integrated system by flowing the protist Euglena gracilis across the aperture array microfluidically and performing OFM imaging of the samples.

© 2008 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(110.0110) Imaging systems : Imaging systems
(110.1220) Imaging systems : Apertures

ToC Category:
Imaging Systems

Original Manuscript: July 17, 2008
Revised Manuscript: September 6, 2008
Manuscript Accepted: September 11, 2008
Published: September 18, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Jigang Wu, Xiquan Cui, Lap Man Lee, and Changhuei Yang, "The application of Fresnel zone plate based projection in optofluidic microscopy," Opt. Express 16, 15595-15602 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, "Optofluidic microscopy - a method for implementing a high resolution optical microscope on an chip," Lab Chip 6, 1274-1276 (2006). [CrossRef] [PubMed]
  2. X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, "Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging," Proc. Natl. Acad. Sci. 105, 10670-10675 (2008). [CrossRef] [PubMed]
  3. X. Heng, E. Hsiao, D. Psaltis, and C. Yang, "An optical tweezer actuated, nanoaperture-grid based optofluidic microscope implementation method," Opt. Express 15, 16367-16375 (2007). [CrossRef] [PubMed]
  4. G. M. Whitesides, "The origins and the future of microfluidics," Nature 442, 368-373 (2006). [CrossRef] [PubMed]
  5. A. G. Michette, Optical systems for soft X rays (Plenum Press, 1986), Chap. 8. [CrossRef]
  6. W. Chao, E. Anderson, G. P. Denbeaux, B. Harteneck, J. A. Liddle, D. L. Olynick, A. L. Pearson, F. Salmassi, C. Y. Song, and D. T. Attwood, "20-nm-resolution soft x-ray microscopy demonstrated by use of multilayer test structures," Opt. Lett. 28, 2019-2021 (2003). [CrossRef] [PubMed]
  7. E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, and R. Barrett, "High-efficiency multilevel zone plates for KeV X-rays," Nature 401, 895-898 (1999). [CrossRef]
  8. R. M. Henkelman and M. J. Bronskill, "Imaging extended objects with a Fresnel-zone-plate aperture," J. Opt. Soc. Am. 64, 134-137 (1974). [CrossRef]
  9. M. Young, "Zone plates and their aberrations," J. Opt. Soc. Am. 62, 972-976 (1972). [CrossRef]
  10. F. Wyrowski, "Diffractive optical elements: iterative calculation of quantized, blazed phase structures," J. Opt. Soc. Am. A 7, 961-969 (1990). [CrossRef]
  11. A. R. Jones, "The focal properties of phase zone plates," J. Phys, D: Appl. Phys. 2, 1789-1791 (1969). [CrossRef]
  12. S. W. Hu, X. Ren, M. Bachman, C. E. Sims, G. P. Li, and N. Allbritton, "Surface modification of Poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting," Anal. Chem. 74, 4117-4123 (2002). [CrossRef] [PubMed]
  13. X. Heng, X. Cui, D. W. Knapp, J. Wu, Z. Yaqoob, E. J. McDowell, D. Psaltis, and C. Yang, "Characterization of light collection through a subwavelength aperture from a point source," Opt. Express 14, 10410 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited