OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 11 — Oct. 22, 2008

Plastinated tissue samples as three-dimensional models for optical instrument characterization

Daniel L. Marks, Eric J. Chaney, and Stephen A. Boppart  »View Author Affiliations

Optics Express, Vol. 16, Issue 20, pp. 16272-16283 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2378 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Histology of biological specimens is largely limited to investigating two-dimensional structure because of the sectioning required to produce optically thin samples for conventional microscopy. With the advent of three-dimensional optical imaging technologies such as optical coherence tomography (OCT), diffuse optical tomography (DOT), and multiphoton microscopy (MPM), methods of tissue preparation that minimally disrupt three-dimensional structure are needed. We propose plastination as a means of transforming tissues into three-dimensional models suitable for optical instrument characterization. Tissues are plastinated by infusing them with transparent polymers, after which they can be safely handled, unlike fresh or fixed tissues. Such models are useful for investigating threedimensional structure, testing and comparing the performance of optical instruments, and potentially investigating tissue properties not normally observed after the three-dimensional scattering properties of a biological samples are lost. We detail our plastination procedures and show examples of imaging several plastinated tissues from a pre-clinical rat model using optical coherence tomography.

© 2008 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(110.4500) Imaging systems : Optical coherence tomography
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(180.6900) Microscopy : Three-dimensional microscopy
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: September 4, 2008
Revised Manuscript: September 21, 2008
Manuscript Accepted: September 24, 2008
Published: September 26, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Daniel L. Marks, Eric J. Chaney, and Stephen A. Boppart, "Plastinated tissue samples as three-dimensional models for optical instrument characterization," Opt. Express 16, 16272-16283 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Biomedical imaging and optical biopsy using optical coherence tomography," Nat. Med. 1, 970-972 (1995). [CrossRef] [PubMed]
  2. A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005). [CrossRef] [PubMed]
  3. W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990). [CrossRef] [PubMed]
  4. G. von Hagens, "Impregnation of Soft Biological Specimens with Thermosetting Resins and Elastomers," Anat. Rec. 194, 247-256 (1979). [CrossRef] [PubMed]
  5. G. von Hagens, K. Tiedemann, and W. Kriz, "The current potential of plastination," Anat. Embryol. 175, 411-421 (1987). [CrossRef] [PubMed]
  6. H. C. Bickley, A. N. Walker, R. L. Jackson, and R. S. Donner, "Preservation of pathology specimens by silicone plastination. An innovative adjunct to pathology education," Am. J. Clin. Pathol. 88, 220-223 (1987). [PubMed]
  7. M. Firbank, M. Oda, and D. T. Delpy, "An improved design for a stable and reproducible phantom material for use in near infrared spectroscopy and imaging," Phys. Med. Biol. 40, 955-961 (1995). [CrossRef] [PubMed]
  8. D. Passos, J. C. Hebden, P. N. Pinto, and R. Guerra, "Tissue phantom for optical diagnostics based on suspension of microspheres with a fractal size distribution," J. Biomed. Opt. 10, 064,036-1-064,036-11 (2005). [CrossRef]
  9. J. C. Hebden, B. D. Price, A. P. Gibson, and G. Royle, "A soft deformable tissue-equivalent phantom for diffuse optical tomography," Phys. Med. Biol. 51, 5581-5590 (2006). [CrossRef] [PubMed]
  10. G. Marquez and L. V. Wang, "White light oblique incidence reflectometer for measuring absorption and reduced scattering spectra for tissue-like turbid media," Opt. Express 1, 454-459 (1997). [CrossRef] [PubMed]
  11. M. Canpolat and J. R. Mourant, "Particle size analysis of turbid media with a single optical fiber in contact with the medium to deliver and detect white light," Appl. Opt. 40, 3792-3799 (2001). [CrossRef]
  12. K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, "Texture analysis of speckle in optical coherence tomography images of tissue phantoms," Phys. Med. Biol. 51, 1563-1575 (2006). [CrossRef] [PubMed]
  13. V. Sankaran, J. T. Walsh, Jr., and D. J. Maitland, "Polarized light propagation through tissue phantoms containing densely packed scatterers," Opt. Lett. 25, 239-241 (2000). [CrossRef]
  14. C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, "Deformable and durable phantoms with controlled density of scatterers," Phys. Med. Biol. 53, N237-N247 (2008). [CrossRef] [PubMed]
  15. M. Firbank and D. T. Delpy, "A design for a stable and reproducible phantom for use in near infrared imaging and spectroscopy," Phys. Med. Biol. 38, 847-853 (1993). [CrossRef]
  16. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "A solid tissue phantom for photon migration studies," Phys. Med. Biol. 42, 1971-1979 (1997). [CrossRef] [PubMed]
  17. G. Wagnires, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. Bergh, "An optical phantom with tissue-like properties in the visible for used in PDT and fluorescence spectroscopy," Phys. Med. Biol. 42, 1415-1426 (1997). [CrossRef]
  18. A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangoni, "Tissue-Like Phantoms for Near-Infrared Fluorescence Imaging System Assessment and the Training of Surgeons," J. Biomed. Opt. 11, 014,007 (2006). [CrossRef]
  19. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, "Optical micro-scale mapping of dynamic biomechanical tissue properties," Opt. Express 16, 11,052-11,065 (2008). [CrossRef]
  20. K. Vishwanath, W. Zhong, M. Close, and M.-A. Mycek, "Fluorescence quenching by polystyrene microspheres in UV-visible and NIR tissue-simulating phantoms," Opt. Express 14, 7776-7788 (2006). [CrossRef] [PubMed]
  21. C. Xu, J. Ye, D. L. Marks, and S. A. Boppart, "Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography," Opt. Lett. 29, 1647-1649 (2004). [CrossRef] [PubMed]
  22. J. Y. Qu, Z. Huang, and J. Hua, "Excitation-and-Collection Geometry Insensitive Fluorescence Imaging of Tissue-Simulating Turbid Media," Appl. Opt. 39, 3344-3356 (2000). [CrossRef]
  23. B. W. Pogue and M. S. Patterson, "Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt. 11, 041,102-1-16 (2006). [CrossRef]
  24. C. H. Fox, F. B. Johnson, J. Whiting, and P. P. Roller, "Formaldehyde Fixation," J. Histochem. Cytochem. 33, 845-853 (1985). [CrossRef] [PubMed]
  25. J. A. Kiernan, "Formaldehyde, formalin, paraformaldehyde, and glutaraldehyde: what they are what what they do," Microscopy Today 00-1, 8-12 (2000).
  26. P.-L. Hsiung, P. R. Nambiar, and J. G. Fujimoto, "Effect of tissue preservation on imaging using ultrahigh resolution optical coherence tomography," J. Biomed. Opt. 10, 064,033-1-064,033-6 (2005). [CrossRef]
  27. C. Pitris, T. Ko, W. Drexler, R. Ghanta, X. Li, C. Chudoba, I. Hartl, and J. G. Fujimoto, "Ultrahigh-resolution in vivo versus ex vivo OCT imaging and tissue preservation," Proc. SPIE 4251, 170-173 (2001). [CrossRef]
  28. N. Feder and R. L. Sidman, "Methods and Principles of Fixation by Freeze-Substitution," J. Biophys. Biochem. Cytol. 4, 593-602 (1958). [CrossRef] [PubMed]
  29. M. T. E. Fahlman, "An Acetone-Vapor Reducing Method for Freeze-Substitution," J. Int. Soc. Plastination 12, 15-16 (1997).
  30. T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, "Inverse scattering for high-resolution interferometric microscopy," Opt. Lett. 31, 3585-3587 (2006). [CrossRef] [PubMed]
  31. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Inverse scattering for optical coherence tomography," J. Opt. Soc. Am. A 23, 1027-1037 (2006). [CrossRef]
  32. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nat. Phys. 5, 129-134 (2007). [CrossRef]
  33. U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000). [CrossRef]
  34. M. A. Choma, M. V. Sarunic, Y. Changhuei, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 111, 2183-2189 (2003). [CrossRef]
  35. A. M. Zysk, E. J. Chaney, and S. A. Boppart, "Refractive index of carcinogen-induced rat mammary tumours," Phys. Med. Biol. 51, 2165-2177 (2006). [CrossRef] [PubMed]
  36. D. L. Marks, S. C. Schlachter, A. M. Zysk, and S. A. Boppart, "Group refractive index reconstruction with broadband interferometric confocal microscopy," J. Opt. Soc. Am. A 25, 1156-1164 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited