OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 12 — Dec. 1, 2008

Spectrally-sampled OCT for sensitivity improvement from limited optical power

Eun Joo Jung, Jae-Seok Park, Myung Yung Jeong, Chang-Seok Kim, Tae Joong Eom, Bong-Ahn Yu, Sangyoun Gee, Jongmin Lee, and Moon Ki Kim  »View Author Affiliations


Optics Express, Vol. 16, Issue 22, pp. 17457-17467 (2008)
http://dx.doi.org/10.1364/OE.16.017457


View Full Text Article

Enhanced HTML    Acrobat PDF (601 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Although high optical illumination power is favored in optical coherence tomography (OCT) for better signal-to-noise ratio, optical power is often limited by a damaged threshold for biomedical living tissues and autocorrelation signals observed in tomograms. In order to improve signal sensitivity without increasing the optical illumination power, a spectrally sampled multi-wavelength light source is proposed for the OCT system. A fiber Sagnac comb filter was used to spectrally sample the output of a continuous spectral light source. Point spread function analysis shows that the spectrally sampled OCT has an almost 50% dynamic range improvement in comparison with a conventional continuous spectral light source OCT for the same average optical power of 6 mW.

© 2008 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.4510) Fiber optics and optical communications : Optical communications
(120.5790) Instrumentation, measurement, and metrology : Sagnac effect

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: July 21, 2008
Revised Manuscript: September 25, 2008
Manuscript Accepted: September 30, 2008
Published: October 15, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Eun Joo Jung, Jae-Seok Park, Myung Yung Jeong, Chang-Seok Kim, Tae Joong Eom, Bong-Ahn Yu, Sangyoun Gee, Jongmin Lee, and Moon Ki Kim, "Spectrally-sampled OCT for sensitivity improvement from limited optical power," Opt. Express 16, 17457-17467 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-22-17457


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography—principles and applications," Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  3. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, "High-speed phase- and group-delay scanning with a grating-based phase control delay line," Opt. Lett. 22, 1811-1813 (1997). [CrossRef]
  4. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  5. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  6. M. A. Choma, M. V. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  7. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003). [CrossRef] [PubMed]
  8. S. W. Lee, C. S. Kim, and B. M. Kim, "External-line cavity wavelength-swept source at 850 nm for optical coherence tomography," IEEE Photon. Technol. Lett. 19, 176-178 (2007). [CrossRef]
  9. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004). [CrossRef] [PubMed]
  10. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  11. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). [CrossRef] [PubMed]
  12. American National Standards Institute, "American National Standard for Safe Use of Lasers," ANSI Z 136-1 (2000).
  13. A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, "Coherent noise-free ophthalmic imaging by spectral optical coherence tomography," J. Phys. D: Appl. Phys. 38, 2606-2611 (2005). [CrossRef]
  14. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, "Improved spectral optical coherence tomography using optical frequency comb," Opt. Express 16, 4163-4176 (2008). [CrossRef] [PubMed]
  15. C. S. Kim and JinU. Kang, "Multi-wavelength switching of Raman fiber ring laser incorporating composite PMF Lyot-Sagnac filter," Appl. Opt. 43, 3151-3157 (2004). [CrossRef] [PubMed]
  16. E. J. Jung, J.-S. Park, M. Y. Jeong, C. S. Kim, T. J. Eom, V. A. Tougbaev, B.-A. Yu, W. Shin, D.-K. Ko, and J.- H. Lee, "Multi-wavelength source for the lower exposure intensity of spectral OCT," Proc. SPIE 6849-10, (2008).
  17. C. S. Kim, B. Choi, J. S. Nelson, Q. Li, P. Z. Dashti, and H. P. Lee, "Compensation of polarization-dependent loss in transmission fiber gratings by use of a Sagnac loop interferometer," Opt. Lett. 30, 20-22 (2005). [CrossRef] [PubMed]
  18. A. Yu and A. S. Siddiqui, "Optical modulators using fibre optic Sagnac interferometers," IEE Proc. Optoelectron. 141, 1-7 (1994). [CrossRef]
  19. G. Hausler and M. W. Lindner, "Coherence radar and spectral radar—new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited