OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 12 — Dec. 1, 2008

Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate Part II: Experimental demonstration

Zhen Jiang, Daqing Piao, Guan Xu, Jerry W. Ritchey, G. Reed Holyoak, Kenneth E. Bartels, Charles F. Bunting, Gennady Slobodov, and Jerzy S. Krasinki  »View Author Affiliations


Optics Express, Vol. 16, Issue 22, pp. 17505-17520 (2008)
http://dx.doi.org/10.1364/OE.16.017505


View Full Text Article

Enhanced HTML    Acrobat PDF (681 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate trans-rectal optical tomography of the prostate using an endo-rectal near-infrared (NIR) applicator integrated with a trans-rectal ultrasound (TRUS) probe. The endo-rectal NIR applicator incorporated a design presented in our previously reported work. A continuous-wave NIR optical tomography system is combined with a commercial US scanner to form the dual-modality imager. Sagittal trans-rectal imaging is performed concurrently by endo-rectal NIR and TRUS. The TRUS ensures accurate positioning of the NIR applicator as well as guides NIR image reconstruction using the spatial prior of the target. The use of a condom, which is standard for TRUS, is found to have minimal effect on trans-rectal NIR imaging. Tests on avian tissues validates that NIR imaging can recover the absorption contrast of a target, and its accuracy is improved when the TRUS spatial prior is incorporated. Trans-rectal NIR/US imaging of a healthy canine prostate in situ is reported.

© 2008 Optical Society of America

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6960) Medical optics and biotechnology : Tomography
(170.7230) Medical optics and biotechnology : Urology

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: August 8, 2008
Revised Manuscript: October 13, 2008
Manuscript Accepted: October 14, 2008
Published: October 15, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Zhen Jiang, Daqing Piao, Guan Xu, Jerry W. Ritchey, G. R. Holyoak, Kenneth E. Bartels, Charles F. Bunting, Gennady Slobodov, and Jerzy S. Krasinski, "Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate, Part II: Experimental demonstration," Opt. Express 16, 17505-17520 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-22-17505


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, "Trans-rectal ultrasound coupled trans-rectal optical tomography of the prostate Part I: Simulations," Opt. Express 16, 17494-17514 (2008).
  2. G. D. Grossfeld and P. R. Carroll, "Prostate cancer early detection: a clinical perspective," Epidemiol. Rev. 23, 173-80 (2001). [CrossRef] [PubMed]
  3. A. C. Loch, A. Bannowsky, L. Baeurle, B. Grabski, B. König, G. Flier, O. Schmitz-Krause, U. Paul, and T. Loch, "Technical and anatomical essentials for transrectal ultrasound of the prostate," World J. Urol. 25, 361-366 (2007). [CrossRef] [PubMed]
  4. C. R. Porter, "Does the number of prostate biopsies performed affect the nature of the cancer identified?" Nat. Clin. Pract. Urol. 4, 132-133 (2007). [CrossRef] [PubMed]
  5. V. Scattoni, A. Zlotta, R. Montironi, C. Schulman, P. Rigatti, and F. Montorsi, "Extended and saturation prostatic biopsy in the diagnosis and characterisation of prostate cancer: a critical analysis of the literature," Eur. Urol. 52,1309-1322 (2007). [CrossRef] [PubMed]
  6. B. Spajic, H. Eupic, D. Tomas, G. Stimac, B. Kruslin, and O. Kraus, "The incidence of hyperechoic prostate cancer in transrectal ultrasound-guided biopsy specimens," Urology 70, 734-737 (2007). [CrossRef] [PubMed]
  7. K. Shinohara, T. M. Wheeler, and P. T. Scardino, "The appearance of prostate cancer on transrectal ultrasonography: correlation of imaging and pathological examinations," J. Urol. 142, 76-82 (1989). [PubMed]
  8. B. Tromberg, J. Coquoz, O. Fishkin, J. B. Pham, T. Anderson, E. R. Butler, J. Cahn, M. Gross, J. D. Venugopalan, and D. Pham, "Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration," Phil. Trans. R. Soc. Lond. B 352, 661-668 (1997). [CrossRef]
  9. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen," Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-266 (2001). [PubMed]
  10. V. Ntziachristos and B. Chance, "Probing physiology and molecular function using optical imaging: applications to breast cancer," Breast Cancer Res. 3, 41-46 (2001). [CrossRef] [PubMed]
  11. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005). [CrossRef] [PubMed]
  12. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, "Frequency-domain techniques enhance optical mammography: initial clinical results," Proc. Nat. Acad. Sci. USA 94, 6468-6473 (1997). [CrossRef] [PubMed]
  13. Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, "Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005). [CrossRef] [PubMed]
  14. B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, "Assessing the future of diffuse optical imaging technologies for breast cancer management," Med Phys. 35, 2443-51 (2008). [CrossRef] [PubMed]
  15. J. H. Ali, W. B. Wang, M. Zevallos, and R. R. Alfano, "Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues," Technol. Cancer Res. Treat. 3, 491-497 (2004). [PubMed]
  16. M. R. Arnfield, J. D. Chapman, J. Tulip, M. C. Fenning, and M. S. McPhee, "Optical properties of experimental prostate tumors in vivo," Photochem. Photobiol. 57, 306-311 (1993). [CrossRef] [PubMed]
  17. T. C. Zhu, A. Dimofte, J. C. Finlay, D. Stripp, T. Busch, J. Miles, R. Whittington, S. B. Malkowicz, Z. Tochner, E. Glatstein, and S. M. Hahn, "Optical properties of human prostate at 732 nm measured in mediated photodynamic therapy," Photochem. Photobiol. 81, 96-105 (2005). [CrossRef]
  18. T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, "In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy," J. Biomed. Opt. 12, 014022 (2007). [CrossRef] [PubMed]
  19. M. Goel, H. Radhakrishnan, H. Liu,  et al. "Application of near infrared multi-spectral CCD imager system to determine the hemodynamic changes in prostate tumor," in OSA Biomedical Topical Meetings (Optical Society of America, 2006), paper SH10.
  20. X. Zhou and T. C. Zhu, "Image reconstruction of continuous wave diffuse optical tomography (DOT) of human prostate," in Proc. the COMSOL Users Conference (2006).
  21. S. L. Jacques and M. Motamedi, "Tomographic needles and catheters for optical imaging of prostatic cancer," Proc. SPIE 2395, 111-118 (1995).
  22. C. Li, R. Liengsawangwong, H. Choi, and R. Cheung, "Using a priori structural information from magnetic resonance imaging to investigate the feasibility of prostate diffuse optical tomography and spectroscopy: a simulation study," Med. Phys. 34, 266-274 (2007). [CrossRef] [PubMed]
  23. H. Dehghani, C. M. Carpenter, P. K. Yalavarthy, B. W. Pogue, and J. P. Culver, "Structural a priori information in near-infrared optical tomography," Proc. SPIE 6431, 64310B1-7 (2007).
  24. M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, "Three-dimensional diffuse optical mammography with ultrasound localization in a human subject," J. Biomed Opt. 5,237-247 (2000). [CrossRef] [PubMed]
  25. A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, "Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-90 (2003). [CrossRef] [PubMed]
  26. M. Guven, B. Yazici, X. Intes, and B. Chance, "Diffuse optical tomography with a priori anatomical information," Phys. Med. Biol. 50, 2837-58 (2005). [CrossRef] [PubMed]
  27. D. Piao, H. Xie. W. Zhang, J. S. Kransinski, G. Zhang, H. Dehghani, and B. W. Pogue, "Endoscopic, rapid near-infrared optical tomography," Opt. Lett. 31, 2876-2878 (2006). [CrossRef] [PubMed]
  28. N. Iftimia and H. Jiang, "Quantitative optical image reconstruction of turbid media by use of direct-current measurements," Appl. Opt. 39, 5256-5261 (2000). [CrossRef]
  29. V. Ntziachristos, "Concurrent diffuse optical tomography, spectroscopy and magnetic resonance imaging of breast cancer," PhD Dissertation, University of Pennsylvania, Philadelphia, PA, 15-16 (2000).
  30. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A. 11, 2727-41 (1994). [CrossRef]
  31. R. Aronson, "Boundary conditions for diffusion of light," J. Opt. Soc. Am. A. 12, 2532-9 (1995). [CrossRef]
  32. D. Piao and B. W. Pogue, "Rapid near-infrared tomography for hemodynamic imaging using a low coherence wideband light source", J. Biomed. Opt. 12, 014016 (2007). [CrossRef] [PubMed]
  33. H. Xu, "MRI-coupled broadband near-infrared tomography for small animal brain studies," Ph.D. Dissertation, Dartmouth College, Hanover, NH, 36-36 (2005).
  34. S. Arridge, M. Cope, and D. Delpy, "The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis," Phys. Med. Biol. 37, 1531-1560 (1992). [CrossRef]
  35. W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990). [CrossRef]
  36. H. Xie, "Dual-spectral endoscopic near-infrared optical tomography for assessment of hemoglobin concentration and oxygen saturation," Master Thesis, Oklahoma State University (2008).
  37. A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, "Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues," Phys. Med. Biol. 43, 1285-302 (1998). [CrossRef] [PubMed]
  38. Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, "Three-dimensional diffuse optical tomography of osteoarthritis: initial results in the finger joints," J. Biomed. Opt. 12, 034001 (2007). [CrossRef] [PubMed]
  39. A. Custo, W. M. Wells3rd, A. H. Barnett, E. M. Hillman, and D. A. Boas, "Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging," Appl. Opt. 45, 4747-55 (2006). [CrossRef] [PubMed]
  40. C. Xu, Q. Zhu, "Estimation of chest-wall-induced diffused wave distortion with the assistance of ultrasound," Appl. Opt. 44, 4255-64 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited