OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 12 — Dec. 1, 2008

Methodology development for three-dimensional MR-guided near infrared spectroscopy of breast tumors

Colin M. Carpenter, Subhadra Srinivasan, Brian W. Pogue, and Keith D. Paulsen  »View Author Affiliations

Optics Express, Vol. 16, Issue 22, pp. 17903-17914 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1443 KB) Open Access ISP Components
Browse Datasets: MIDAS Click for help

Full-Text PDF contains links to datasets. See ISP homepage for software requirements and other information.

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Combined Magnetic Resonance (MR) and Near Infrared Spectroscopy (NIRS) has been proposed as a unique method to quantify hemodynamics, water content, and cellular size and packing density of breast tumors, as these tissue constituents can be quantified with increased resolution and overlaid on the structural features identified by the MR. However, the choices in how to reconstruct and visualize this information can have a dramatic impact on the feasibility of implementing this modality in the clinic. This is especially true in 3 dimensions, as there is often limited optical sampling of the breast tissue, and methods need to accurately reflect the tissue composition. In this paper, the implementation and display of fully 3D MR image-guided NIRS is outlined and demonstrated using in vivo data from three healthy women and a volunteer undergoing neoadjuvant chemotherapy. Additionally, a display feature presented here scales the transparency of the optical images to the sensitivity of the measurements, providing a logical way to incorporate partial volume sets of optical images onto the MR volume. These concepts are demonstrated with 3D data sets using Volview software online.

© 2008 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 1, 2008
Revised Manuscript: October 10, 2008
Manuscript Accepted: October 18, 2008
Published: October 21, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics
Interactive Science Publishing (2008) Optics Express

Colin M. Carpenter, Subhadra Srinivasan, Brian W. Pogue, and Keith D. Paulsen, "Methodology development for three-dimensional MR-guided near infrared spectroscopy of breast tumors," Opt. Express 16, 17903-17914 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Bone, Z. Pentek, L. Perbeck, and B. Veress, "Diagnostic accuracy of mammography and contrast-enhanced mr imaging in 238 histologically verified breast lesions," Acta. Radiol. 38, 489-496 (1997). [PubMed]
  2. D. Bluemke, C. Gatsonis, M. Chen, G. DeAngelis, N. DeBruhl, S. Harms, S. Heywang-Kobrunner, N. Hylton, C. Kuhl, C. Lehman, E. Pisano, P. Causer, S. Schnitt, S. Smazal, C. Stelling, P. Weatherall, and M. Schnall, "Magnetic resonance imaging of the breast prior to biopsy," J. Am. Med. Assoc. 292, 2735-2742 (2004). [CrossRef]
  3. S. Orel and M. Schnall, "Mr imaging of the breast for detection, diagnosis, and staging of breast cancer," Radiology 220, 13-30 (2001). [PubMed]
  4. P. Hathaway, D. Mankoff, K. Maravilla, M. Austin-Seymour, G. Ellis, J. Gralow, A. Cortese, C. Hayes, and R. Mode, "Value of combined fdg pet and mr imaging in the evaluation of suspected recurrent local-regional creast cancer: Preliminary experience," Radiology 210, 807-814 (1999). [PubMed]
  5. C. Catana, D. Procissi, Y. Wu, M. Judenhofer, J. Qi, B. Pichler, R. Jacobs, and S. Cherry, "Simultaneous in vivo positron emission tomography and magnetic resonance imaging," Proc. Natl. Acad. Sci. USA 105, 3705-3710 (2008). [CrossRef] [PubMed]
  6. R. Sinkus, K. Siegmann, T. Xydeas, M. Tanter, C. Claussen, and M. Fink, "MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography," Magn. Reson. Med. 58, 1135-1144 (2007). [CrossRef] [PubMed]
  7. E. Van Houten, M. Doyley, F. Kennedy, J. Weaver, and K. Paulsen, "Initial in vivo experience with steady-state subzone-based mr elastography of the human breast," J. Magn. Reson. Im. 17, 72-85(2002). [CrossRef]
  8. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, "Concurrent mri and diffuse optical tomography of breast after indocyanine green enhancement," Proc. Natl. Acad. Sci. USA 97, 2767-72 (2000). [CrossRef] [PubMed]
  9. V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, "Mri-guided diffuse optical spectroscopy of malignant and benign breast lesions," Neoplasia 4, 347-54 (2002). [CrossRef] [PubMed]
  10. B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, "Magnetic resonance-guided near-infrared tomography of the breast," Rev. Sci. Instrum. 75, 5262-5270 (2004).
  11. B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. Tosteson, J. B. Weaver, S. P. Poplack, and K. D. Paulsen, "Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid mri-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. USA 103, 8828-8833 (2006). [CrossRef] [PubMed]
  12. D. Townsend and S. Cherry, "Combining anatomy and function: the path to true image fusion," Eur. Radiol. 11, 1968-1974 (2001). [CrossRef] [PubMed]
  13. S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. Poplack, and K. D. Paulsen, "Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction," Technol. Cancer Res. Treat. 4, 513-526 (2005). [PubMed]
  14. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, O. K. S., U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: Pilot results in the breast," Radiology 218, 261-266 (2001). [PubMed]
  15. A. Cerrusi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11, 044005 (2006). [CrossRef]
  16. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt. 37, 1982-1989 (1998). [CrossRef]
  17. D. Grosenick, K. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. Schlag, and H. Rinneberg, "Time-domain optical mammography: Initial clinical results on detection and characterization of breast tumors," Appl. Opt. 42, 3170-3186 (2003). [CrossRef] [PubMed]
  18. B. Chance, S. Nioka, J. Zhang, E. Conant, E. Hwang, S. Briest, S. Orel, M. Schnall, and B. Czerniecki, "Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: A six-year, two-site study," Acad. Radiol. 12, 925-933 (2005). [CrossRef] [PubMed]
  19. S. Poplack, T. Tosteson,W. Wells, B. Pogue, P. Meaney, A. Hartov, C. Kogel, S. Soho, J. Gibson, and K. Paulsen, "Electromagnetic breast imaging: Results of a pilot study in women with abnormal mammograms," Radiology 243, 350-359 (2007). [CrossRef] [PubMed]
  20. B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. B. Weaver, C. Kogel, and S. P. Poplack, "Combining near infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a laplacian-type regularization to incorporate mr structure," J. Biomed. Opt. 10, 050504-1-10 (2005). [CrossRef] [PubMed]
  21. X. Intes, C. Maloux, M. Guven, T. Yazici, and B. Chance, "Diffuse optical tomography with physiological and spatial a priori constraints," Phys. Med. Biol. 49, N155-N163 (2004). [CrossRef] [PubMed]
  22. A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilaccio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Choriton, R. H. Moore, D. B. Kopans, and D. A. Boas, "Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-5190 (2003). [CrossRef] [PubMed]
  23. P. Yalavarthy, B. Pogue, H. Dehghani, C. Carpenter, S. Jiang, and K. Paulsen, "Structural information within regularization matrices improves near infrared diffuse optical tomography," Opt. Express 15, 8043-8058 (2007). [CrossRef] [PubMed]
  24. C. Carpenter, B. Pogue, S. Jiang, H. Dehghani, X. Wang, K. Paulsen, W. Wells, J. Forero, C. Kogel, J. Weaver, S. Poplack, and P. Kaufman, "Image-guided spectroscopy provides molecular specific information in vivo: Mriguided spectroscopy of breast cancer hemoglobin, water, and scatterer size," Opt. Lett. 32, 933-935 (2007). [CrossRef] [PubMed]
  25. H. Dehghani, B.W. Pogue, S. Jiang, B. A. Brooksby, and K. D. Paulsen, "Three-dimensional optical tomography: resolution in small-object imaging," Appl. Opt. 42, 3117-3128 (2003). [CrossRef] [PubMed]
  26. T. O. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. L. Osterberg, and K. D. Paulsen, "Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygenation in tissue," Appl. Opt. 38, 5480-90 (1999). [CrossRef]
  27. S. R. Arridge and M. Schweiger, "Photon-measurement density functions. part 2: Finite-element-method calculations," Appl. Opt. 34, 8026-8037 (1995). [CrossRef] [PubMed]
  28. S. R. Arridge, S. M., and D. T. Delpy, "Iterative reconstruction of near infrared absorption images," Proc. SPIE 1767, 372-383 (1992). [CrossRef]
  29. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, "Diffuse optical tomography with spectral constraints and wavelength optimization," Appl. Opt. 44, 2082-2093 (2005). [CrossRef] [PubMed]
  30. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, "Spectrally constrained chromophore and scattering nir tomography improves quantification and robustness of reconstruction," Appl. Opt. 44, 1858-1869 (2004). [CrossRef]
  31. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, "Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo," Rev. Sci. Instrum. 72, 1817-1824 (2001). [CrossRef]
  32. P. Yalavarthy, B. Pogue, H. Dehghani, and K. Paulsen, "Weight-matrix structured regularization provides optical generalized least-squares estimate in diffuse optical tomography," Med. Phys. 34, 2085 (2007). [CrossRef] [PubMed]
  33. M. Schweiger, I. Nissila, D. Boas, and S. Arridge, "Image reconstruction in the presence of coupling errors," Appl. Opt. 46, 2743-2756 (2007). [CrossRef] [PubMed]
  34. J. Zhang, J. Sullivan, H. Yu, and Z. Wu, "Image-guided multimodality registration and visualization for breast cancer detection," Proc. SPIE 5744, 123-133 (2005). [CrossRef]
  35. S. Fantini, M. A. Francheschini, A. Cerussi, J. S. Maier, S. A. Walker, B. Barbieri, B. Chance, and E. Gratton, "The effect of water in the quantitation of hemoglobin concentration in a tissue-like phantom by near-infrared spectroscopy," Biophys. J. 70, WP343-WP343 (1996). Part 2.
  36. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, and S. P. Poplack, "Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast," J. Biomed. Opt. 7, 72-79 (2001). [CrossRef]
  37. A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002). [CrossRef] [PubMed]
  38. A. Li, G. Boverman, Y. Zhang, D. Brooks, E. Miller, M. Kilmer, Q. Zhang, E. Hillman, and D. Boas, "Optical linear inverse solution with multiple priors in diffuse optical tomography," Appl. Opt. 44, 1948-1956 (2005). [CrossRef] [PubMed]
  39. S. Merritt, S. Gulsen, G. Chiou, Y. Chu, C. Deng, A. Cerussi, A. Durkin, B. Tromberg, and O. Nalcioglu, "Comparison of water and lipid content measurements using diffuse optical spectroscopy and mri in emulsion phantoms," Technol. Cancer Res. Treat. 2, 563-569 (2003). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited