OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 2 — Feb. 10, 2009

Subband photoacoustic imaging for contrast improvement

Pai-Chi Li, Chen-Wei Wei, and Yae-lin Sheu  »View Author Affiliations


Optics Express, Vol. 16, Issue 25, pp. 20215-20226 (2008)
http://dx.doi.org/10.1364/OE.16.020215


View Full Text Article

Enhanced HTML    Acrobat PDF (452 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Contrast in photoacoustic imaging is primarily determined by optical absorption. This paper proposes a subband imaging method to further enhance the image contrast. The method is based on media with different absorptions generating acoustic waves with different frequency contents. Generally, assuming all other conditions remain the same, a high-absorption medium generates acoustic waves with higher frequency components, and hence the imaging contrast can be enhanced by appropriate selection of the spectral subbands. This study employed both finite-difference, time-domain-based simulations and phantom imaging. The numerical results show that the peak frequencies of the signals for objects with absorption coefficients of 1 and 100 cm-1 were 2.4 and 7.8 MHz, respectively. Imaging an agar-based phantom further demonstrated that the contrast between two objects with absorption coefficients of 5.01 and 41.75 cm-1 can be improved by 4–10 dB when the frequency band was changed from 0–7 to 7–14 MHz. Finally, a method to further enhance the contrast based on optimal weighting is also presented. The proposed method is of particular interest in photoacoustic molecular imaging.

© 2008 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: August 11, 2008
Revised Manuscript: October 17, 2008
Manuscript Accepted: November 20, 2008
Published: November 24, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Pai-Chi Li, Chen-Wei Wei, and Yae-lin Sheu, "Subband photoacoustic imaging for contrast improvement," Opt. Express 16, 20215-20226 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-25-20215


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Zhao and R. Myllyla, "Measuring the optical parameters of weakly absorbing, highly turbid suspensions by a new technique: photoacoustic detection of scattered light," Appl. Opt. 44, 7845-7852 (2005). [CrossRef] [PubMed]
  2. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, "Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress," Appl. Opt. 36, 402-415 (1997). [CrossRef] [PubMed]
  3. H. A. Mackenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, "Advances in photoacoustic noninvasive glucose testing," Clin. Chem. 45, 1587-1595 (1999). [PubMed]
  4. R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, "Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study," Appl. Opt. 41, 4722-4731 (2002). [CrossRef] [PubMed]
  5. C. W. Wei, S. W. Huang, C. R. C. Wang, and P.-C. Li, "Photoacoustic flow measurements based on wash-in analysis of gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1131-1141 (2007). [CrossRef] [PubMed]
  6. C.-K. Liao, S.-W. Huang, C.-W. Wei, and P.-C. Li, "Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system," J. Biomed. Opt. 12, 064006 (2007). [CrossRef]
  7. M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 1-22 (2006). [CrossRef]
  8. C.-K. Liao, M.-L. Li, and P.-C. Li, "Optoacoustic imaging with synthetic aperture focusing and coherence weighting," Opt. Lett. 29, 2506-2508 (2004). [CrossRef] [PubMed]
  9. M. Xu, Y. Xu, and L. V. Wang, "Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries," IEEE Trans. Biomed. Eng. 50, 1086-1099 (2003). [CrossRef] [PubMed]
  10. R. A. Kruger, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography - technical considerations," Med. Phys. 26, 1832-1837 (1999). [CrossRef] [PubMed]
  11. P. N. T. Wells, "Ultrasonic imaging of the human body," Rep. Prog. Phy. 62, 671-722 (1999). [CrossRef]
  12. C.-K. Liao and P.-C. Li, "Reconstruction of optical energy deposition for backward optoacoustic imaging," Opt. Quantum Electron. 37, 1339-1351 (2005). [CrossRef]
  13. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, (SPIE Press, Bellingham, Washington, 2007).
  14. P. N. Prasad, Introduction to Biophotonics, (John Wiley and Sons, New Jersey, 2003). [CrossRef]
  15. P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, "Photoacoustic imaging of multiple targets using gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642-1647 (2007). [CrossRef] [PubMed]
  16. J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, "Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography," Mol. Imaging Biol. 6, 341-349 (2004). [CrossRef] [PubMed]
  17. Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004). [CrossRef]
  18. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics, (American Institute of Physics, New York, 1993) Chap 2, pp 45-48.
  19. D.-H. Huang, C.-K. Liao, C.-W. Wei, and P.-C. Li, "Simulations of optoacoustic wave propagation in light-absorbing media using a finite-difference time-domain method," J. Acoust. Soc. Am. 117, 2795-2801 (2005). [CrossRef] [PubMed]
  20. P. F. Stetson, F. G. Sommer, and A. Macovski, "Lesion contrast enhancement in medical ultrasound imaging," IEEE Trans. Med. Imaging 16, 416-425 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited