OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 2 — Feb. 10, 2009

Galerkin-based meshless methods for photon transport in the biological tissue

Chenghu Qin, Jie Tian, Xin Yang, Kai Liu, Guorui Yan, Jinchao Feng, Yujie Lv, and Min Xu  »View Author Affiliations


Optics Express, Vol. 16, Issue 25, pp. 20317-20333 (2008)
http://dx.doi.org/10.1364/OE.16.020317


View Full Text Article

Enhanced HTML    Acrobat PDF (1055 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

As an important small animal imaging technique, optical imaging has attracted increasing attention in recent years. However, the photon propagation process is extremely complicated for highly scattering property of the biological tissue. Furthermore, the light transport simulation in tissue has a significant influence on inverse source reconstruction. In this contribution, we present two Galerkin-based meshless methods (GBMM) to determine the light exitance on the surface of the diffusive tissue. The two methods are both based on moving least squares (MLS) approximation which requires only a series of nodes in the region of interest, so complicated meshing task can be avoided compared with the finite element method (FEM). Moreover, MLS shape functions are further modified to satisfy the delta function property in one method, which can simplify the processing of boundary conditions in comparison with the other. Finally, the performance of the proposed methods is demonstrated with numerical and physical phantom experiments.

© 2008 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5280) Medical optics and biotechnology : Photon migration

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 29, 2008
Revised Manuscript: November 3, 2008
Manuscript Accepted: November 11, 2008
Published: November 24, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Chenghu Qin, Jie Tian, Xin Yang, Kai Liu, Guorui Yan, Jinchao Feng, Yujie Lv, and Min Xu, "Galerkin-based meshless methods for photon transport in the biological tissue," Opt. Express 16, 20317-20333 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-25-20317


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005). [CrossRef] [PubMed]
  2. G. Wang, W. Cong, H. Shen, X. Qian, M. Henry, and Y. Wang, "Overview of bioluminescence tomography-a new molecular imaging modality," Front. Biosci. 13, 1281-1293 (2008). [CrossRef]
  3. S. Bhaumik and S. S. Gambhir, "Optical imaging of Renilla luciferase reporter gene expression in living mice," Proc. Natl. Acad. Sci. USA 99, 377-382 (2002). [CrossRef]
  4. T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003). [CrossRef] [PubMed]
  5. W. Rice, M. D. Cable, and M. B. Nelson, "In vivo imaging of light-emitting probes," J. Biomed. Opt. 6, 432-440 (2001). [CrossRef] [PubMed]
  6. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003). [CrossRef] [PubMed]
  7. A. Cong and G. Wang, "A finite-element-based reconstruction method for 3D fluorescence tomography," Opt. Express 13, 9847-9857 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-24-9847. [CrossRef] [PubMed]
  8. C. Contag and M. H. Bachmann, "Advances in bioluminescence imaging of gene expression," Annu. Rev. Biomed. Eng. 4, 235-260 (2002). [CrossRef] [PubMed]
  9. G. Wang, H. Shen, W. Cong, S. Zhao, and G. W. Wei, "Temperature-modulated bioluminescence tomography," Opt. Express 14, 7852-7871 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7852. [CrossRef] [PubMed]
  10. V. Y. Soloviev, "Tomographic bioluminescence imaging with varying boundary conditions," Appl. Opt. 46, 2778-2784 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ao-46-14-2778. [CrossRef]
  11. Y. Lv, J. Tian, W. Cong, G. Wang, W. Yang, C. Qin, and M. Xu, "Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation," Phys. Med. Biol. 52, 4497-4512 (2007). [CrossRef] [PubMed]
  12. A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005). [CrossRef] [PubMed]
  13. W. Cong, A. Cong, H. Shen, Y. Liu, and G. Wang, "Flux vector formulation for photon propagation in the biological tissue," Opt. Lett.  32, 2837-2839 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-19-2837. [CrossRef] [PubMed]
  14. Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, "A multilevel adaptive finite element algorithm for bioluminescence tomography," Opt. Express 14, 8211-8223 (2006), http://www.opticsinfobase. org/abstract.cfm?URI=oe-14-18-8211. [CrossRef] [PubMed]
  15. A. Joshi, W. Bangerth, and E. Sevick-Muraca, "Adaptive finite element based tomography for fluorescence optical imaging in tissue," Opt. Express 12, 5402-5417 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-22-5402. [CrossRef] [PubMed]
  16. A. Joshi, W. Bangerth, A. B. Thompson, and E. M. Sevick-Muraca, "Adaptive finite element methods for fluorescence enhanced frequency domain optical tomography: forward imaging problem," IEEE International Symposium on Biomedical Imaging (ISBI 2004) 2, 1103-1106 (2004).
  17. W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, "A practical method to determine the light source distribution in bioluminescent imaging," Proc. SPIE 5535, 679-686 (2004). [CrossRef]
  18. L. H. Wang, S. L. Jacques, and L. Q. Zheng, "MCML-Monte Carlo modeling of photon transport in multi-layered tissues," Comput. Meth. Prog. Biomed. 47, 131-146 (1995). [CrossRef]
  19. D. Boas, J. Culver, J. Stott, and A. Dunn, "Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head," Opt. Express 10, 159-169 (2002), http: //www.opticsinfobase.org/abstract.cfm?URI=oe-10-3-159. [PubMed]
  20. H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with Monte Carlo method," Acad. Radiol. 11, 1029-1038 (2004). [CrossRef] [PubMed]
  21. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, "Practical reconstruction method for bioluminescence tomography," Opt. Express 13, 6756-6771 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-18-6756. [CrossRef] [PubMed]
  22. Y. Lv, J. Tian, H. Li, J. Luo, W. Cong, G. Wang, and D. Kumar, "Modeling the forward problem based on the adaptive FEMs framework in bioluminescence tomography," Proc. SPIE 6318, 63180I (2006). [CrossRef]
  23. S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, "The finite element model for the propagation of light in scattering media: A direct method for domains with nonscattering regions," Med. Phys. 27, 252-264 (2000). [CrossRef] [PubMed]
  24. R. H. Bayford, A. Gibson, A. TizzardA, T. Tidswell, and D. S. Holder, "Solving the forward problem in electrical impedance tomography for the human head using IDEAS (integrated design engineering analysis software), a finite element modelling tool," Physiol. Meas. 22, 55-64 (2001). [CrossRef] [PubMed]
  25. S. J. Koopman, A. C. Harvey, J. A. Doornick, and N. Shephard, Stamp 5.0: structural time series analyser, modeller and predictor, (The Manual. Chapman & Hall, London, 1995).
  26. I. V. Singh, K. Sandeep, and R. Prakash, "The element free Galerkin method in three dimensional steady state heat conduction," Int. J. Comput. Eng. Sci. 3, 291-303 (2002). [CrossRef]
  27. I. V. Singh, "Parallel implementation of the EFG method for heat transfer and fluid flow problems," Adv. Eng. Software 34, 453-463 (2004).
  28. T. Belytschko, L. Gu, and Y. Y. Lu, "Fracture and crack growth by element-free Galerkin methods," Modelling Simul. Mater. Sci. Eng. 2, 519-534 (1994). [CrossRef]
  29. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys.Med. Biol. 50, 4225-4241 (2005). [CrossRef] [PubMed]
  30. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995). [CrossRef] [PubMed]
  31. W. G. Egan and T. W. Hilgeman, optical properties of inhomogeneous materials, (Academic, New York, 1979).
  32. T. Belytschko, Y. Y. Lu, and L. Gu, "Element-free Galerkin method," Int. J. Numer. Methods Eng. 37, 229-256 (1994). [CrossRef]
  33. J. Dolbow and T. Belytschko, "An introduction to programming the meshless element free Galerkin method," Arch. Comput. Methods Eng. 5, 207-241 (1998). [CrossRef]
  34. X. Zhang and Y. Liu, Meshless methods, (Tsinghua University Press, Beijing, 2004).
  35. J. S. Chen and H. P. Wang, "New boundary condition treatments in meshfree computation of contact problems," Comput. Methods Appl. Mech. Eng. 187, 441-468 (2000). [CrossRef]
  36. S. Li,W. Hao, and W. K. Liu, "Numerical simulations of large deformation of thin shell structures using meshfree methods," Comput. Mech. 25, 102-116 (2000). [CrossRef]
  37. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993). [CrossRef] [PubMed]
  38. J. Schöberl, "Netgen an advancing front 2D/3D-mesh generator based on abstract rules," Comput. Visual.Sci. 1, 41-52 (1997). [CrossRef]
  39. D. Qin, H. Zhao, Y. Tanikawa, and F. Gao, "Experimental determination of optical properties in turbid medium by TCSPC technique," Proc. SPIE 6434, 64342E (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited