OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 2 — Feb. 10, 2009

10000 times volume reduction for fluorescence correlation spectroscopy using nano-antennas

Laura C. Estrada, Pedro F. Aramendía, and Oscar E. Martínez  »View Author Affiliations


Optics Express, Vol. 16, Issue 25, pp. 20597-20602 (2008)
http://dx.doi.org/10.1364/OE.16.020597


View Full Text Article

Enhanced HTML    Acrobat PDF (150 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an experimental and theoretical study of a new scheme for Near-Field Fluorescence Correlation Spectroscopy that, using the field enhancement by optical nanoantennas, allows the reduction of the observation volume 4 orders of magnitude below the diffraction limit. This reduction can be used in two different ways: to increase the sample concentration and to improve the spatial resolution of the dynamics under study. Our experimental results using individual gold nanoparticles and a 150µM Rose Bengal solution in glycerol confirm the volume reduction.

© 2008 Optical Society of America

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(240.6680) Optics at surfaces : Surface plasmons
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Microscopy

History
Original Manuscript: October 10, 2008
Revised Manuscript: November 4, 2008
Manuscript Accepted: November 4, 2008
Published: November 26, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Laura C. Estrada, Pedro F. Aramendía, and Oscar E. Martínez, "10000 times volume reduction for fluorescence correlation spectroscopy using nano-antennas," Opt. Express 16, 20597-20602 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-25-20597


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Magde, E. Elson, and W. W. Webb, "Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972). [CrossRef]
  2. E. Bismuto, E. Gratton, and D. C. Lamb "Dynamics of ANS Binding to Tuna Apomyoglobin Measured with Fluorescence Correlation Spectroscopy," Biophys. J. 81, 3510-3521 (2001). [CrossRef] [PubMed]
  3. L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, "Fluorescence Correlation Spectroscopy in Subdiffraction Focal Volumes," Phys. Rev. Lett. 94,178104 (2005). [CrossRef] [PubMed]
  4. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Nat. Acad. Sci. 97,8206-8210 (2000). [CrossRef] [PubMed]
  5. H. Rigneault and P. Lenne, "Fluorescence correlation spectroscopy on a mirror," J. Opt. Soc. Am. B 20, 2203-2214 (2003). [CrossRef]
  6. T. E. Starr and N. L. Thompson, "Total Internal Reflection with Fluorescence Correlation Spectroscopy: Combined Surface Reaction and Solution Diffusion," Biophys. J. 80, 1575-1584 (2001). [CrossRef] [PubMed]
  7. M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, "Near-Field Fluorescence Microscopy: An optical Nanotool to Study Protein Organization at the Cell Membrane," Nano Biotech. 1, 113-120 (2005). [CrossRef]
  8. Y. Kawata, C. Xu, and W. Denk, "Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancenment near a sharp tip," J. Appl. Phys. 85, 1294 (1999). [CrossRef]
  9. N. Calander, P. Muthu, Z. Gryczynski, I. Gryczynski, and J. Borejdo "Fluorescence correlation spectroscopy in a reverse Kretchmann surface plasmon assisted microscope," Opt. Express 16, 13381-13390 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-17-13381. [CrossRef] [PubMed]
  10. J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, "Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope," Opt. Express 14, 7878-7888 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7878. [CrossRef] [PubMed]
  11. M. Foquet, J. Korlach, W. R. Zipfel, W. W. Webb, and H. G. Craighead, "Focal Volume Confinement by Submicrometer-Sized Fluidic Channels," Anal. Chem. 76, 1618 - 1626 (2004). [CrossRef] [PubMed]
  12. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations," Science 299,682-686 (2003). [CrossRef] [PubMed]
  13. M. Leutenegger, M. Gösch, A. Perentes, P. Hoffmann, O. J. F. Martin, and T. Lasser, "Confining the sampling volume for Fluorescence Correlation Spectroscopy using a sub-wavelength sized aperture," Opt. Express 14, 956-969 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-956. [CrossRef] [PubMed]
  14. J. Wenger, D. Gérard, P. Lenne, H. Rigneault, J. Dintinger, T. W. Ebbesen, A. Boned, F. Conchonaud, and D. Marguet, "Dual-color fluorescence cross-correlation spectroscopy in a single nanoaperture : towards rapid multicomponent screening at high concentrations," Opt. Express 14, 12206-12216 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-25-12206. [CrossRef] [PubMed]
  15. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures," Phys. Rev. Lett. 95, 117401 (2005). [CrossRef] [PubMed]
  16. C. Zander, J. Enderlein, R. A. Keller (ed), Single-Molecule Detection in Solution-Methods and Applications (Wiley-VCH, 2002), Chap. 3. [CrossRef]
  17. C. Fradin, A. Abu-Arish, R. Granek, and M. Elbaum, "Fluorescence Correlation Spectroscopy Close to a Fluctuating Membrane," Biophys. J. 84, 2005-2020 (2003). [CrossRef] [PubMed]
  18. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2007).
  19. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007). [CrossRef] [PubMed]
  20. K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, "Metal-enhanced fluorescence: an emerging tool in biotechnology," Curr. Op. in Biotech 16, 55-62, (2005). [CrossRef]
  21. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, "Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas," Nano Lett. 7, 2871-2875 (2007). [CrossRef] [PubMed]
  22. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002, (2006). [CrossRef] [PubMed]
  23. P. Bharadwaj and L. Novotny, "Spectral dependence of single molecule fluorescence enhancement," Opt. Express 15, 14266-14274 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-14266. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited