OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 2 — Feb. 10, 2009

Suitability of Filofocon A and PMMA for experimental models in excimer laser ablation refractive surgery

Carlos Dorronsoro, Jan Siegel, Laura Remon, and Susana Marcos  »View Author Affiliations


Optics Express, Vol. 16, Issue 25, pp. 20955-20967 (2008)
http://dx.doi.org/10.1364/OE.16.020955


View Full Text Article

Enhanced HTML    Acrobat PDF (248 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Experimental corneal models in plastic (in PMMA, and more recently in Filofocon A, a contact lens material) have been proposed recently to overcome some of the limitations of the theoretical approaches aiming at improving the predictability of corneal reshaping by laser ablation. These models have also been proposed for accurate assessment of corneal laser ablation patterns. In this study Filofocon A and PMMA optical and ablation properties were studied using an experimental excimer laser set-up. The effective absorption coefficient and the ablation thresholds of these materials were obtained as a function of the number of pulses. Both materials follow a Beer-Lambert law in the range of fluences used in refractive surgery, and the number of incubation pulses is less than 4 (PMMA) and 2 (Filofocon A) above 140 mJ/cm2. We found that above 40 pulses for Filofocon A and 70 pulses for PMMA, ablation threshold and effective absorption coefficients can be considered constant (Fth =90 mJ/cm2 and αeff =36000 cm-1, for Filofocon A, and Fth =67 mJ/cm2 and αeff =52000 cm-1 for PMMA, respectively). The absence of ablation artifacts (central islands), a lower number of incubation pulses, a lower pulse-number dependence of the ablation threshold, and a good correspondence between αeff and the absorption coefficient α estimated from spectroscopic measurements make Filofocon A a more appropriate material than PMMA for experimental models in refractive surgery and for calibration of clinical lasers.

© 2008 Optical Society of America

OCIS Codes
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(140.3390) Lasers and laser optics : Laser materials processing
(170.1020) Medical optics and biotechnology : Ablation of tissue
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: October 8, 2008
Revised Manuscript: November 12, 2008
Manuscript Accepted: November 12, 2008
Published: December 3, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Carlos Dorronsoro, Jan Siegel, Laura Remon, and Susana Marcos, "Suitability of Filofocon A and PMMA for experimental models in excimer laser ablation refractive surgery," Opt. Express 16, 20955-20967 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-25-20955


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Visual Sci. 42, 1396-1403 (2001).
  2. S. Marcos, B. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberration measurements," Invest. Ophthalmol. Visual Sci. 42, 3349-3356 (2001).
  3. R. A. Applegate and H. C. Howland, "Refractive surgery, optical aberrations, and visual perfomance," J. Refractive Surg. 13, 295-299 (1997).
  4. T. Seiler, M. Kaemmerer, P. Mierdel, and H.-E. Krinke, "Ocular optical aberrations after photorefractive keratectomy for myopia and myopic astigmatism," Arch. Ophthalmol. 118, 17-21 (2000). [PubMed]
  5. S. Marcos, "Aberrations and Visual Performance following standard laser vision correction," J. Refract. Surgery 17, 596-601 (2001).
  6. F. Manns, A. Ho, J. M. Parel, and W. Culbertson, "Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration," J. Cataract. Refract. Surg. 28, 766-774 (2002). [CrossRef] [PubMed]
  7. S. Klein, "Optimal corneal ablation for eyes with arbitrary Hartmann-Shack aberrations," J. Opt. Soc. Am. A 15, 2580-2588 (1998). [CrossRef]
  8. M. Mrochen, C. Donitzky, C. Wullner, and J. Loffler, "Wavefront-optimized ablation profiles: Theoretical background," J. Cataract. Refract. Surg. 30, 775-785 (2004). [CrossRef] [PubMed]
  9. B. T. Fisher and D. W. Hahn, "Determination of Excimer laser ablation rates of corneal tissue using wax impressions of ablation craters and white-light interferometry," Ophthalmic Surg. Lasers Imaging 35, 41-51 (2004). [PubMed]
  10. S. Marcos, D. Cano, and S. Barbero, "The increase of corneal asphericity after standard myopic LASIK surgery is not inherent to the Munnerlyn algorithm," J. Refractive Surg. 19, 592-596 (2003).
  11. D. Cano, B. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A 21, 926-936 (2004). [CrossRef]
  12. D. Gatinel, T. Hoang-Xuan, and D. Azar, "Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model," Invest. Ophthalmol. Visual Sci. 42, 1736-1742 (2001).
  13. R. Anera, J. Jimenez, L. Jimenez del Barco, and E. Hita, "Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea." Opt Lett. 28, 417-419 (2003). [CrossRef] [PubMed]
  14. M. Mrochen, and T. Seiler, "Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery." J Refract Surg. 17, S584-S587. (2001). [PubMed]
  15. J. R. Jimenez, F. Rodriguez-Marin, R. G. Anera, and L. J. del Barco, "Deviations of Lambert-Beer's law affect corneal refractive parameters after refractive surgery," Opt. Express 14, 5411-5417 (2006). [CrossRef] [PubMed]
  16. J. R. Jimenez, R. G. Anera, L. J. del Barco, E. Hita, and F. Perez-Ocon, "Correction factor for ablation algorithms used in corneal refractive surgery with gaussian-profile beams," Opt. Express 13, 336-343 (2005). [CrossRef] [PubMed]
  17. J. R. Jimenez, R. G. Anera, L. J. del Barco, and E. Hita, "Influence of laser polarization on ocular refractive parameters after refractive surgery," Opt. Lett. 29, 962-964 (2004). [CrossRef] [PubMed]
  18. S. Arba-Mosquera and D. de Ortueta, "Geometrical analysis of the loss of ablation efficiency at non-normal incidence," Opt. Express 16, 3877-3895 (2008). [CrossRef] [PubMed]
  19. Y. Kwon, M. Choi, and S. Bott, "Impact of ablation efficiency reduction on post-surgery corneal asphericity: simulation of the laser refractive surgery with a flying spot laser beam," Opt. Express 16, 11808-11821 (2008). [CrossRef] [PubMed]
  20. W. J. Dupps and S. E. Wilson, "Biomechanics and wound healing in the cornea," Exp. Eye Res. 83, 709-720 (2006). [CrossRef] [PubMed]
  21. S. Marcos, C. Dorronsoro, and D. Cano, "Spherical aberration prevention method in e.g. laser refractive surgery system," (Patent WO 2005/122873 A1, 2005), http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=WO2005122873.
  22. C. Dorronsoro, D. Cano, J. Merayo, and S. Marcos, "Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape," Opt. Express 14, 6142-6156 (2006). [CrossRef] [PubMed]
  23. "ANSI Z80.11 Laser Systems for Corneal Reshaping" (American National Standard Institute, 2007).
  24. "Opthalmic Devices Panel 110th Meeting," (Food and Drug Administration, 2008).
  25. B. Drum, "The Evolution of the Optical Zone in Corneal Refractive Surgery," in Wavefront Congress (Santa Fe, New Mexico, 2007).
  26. B. Drum, "Evaluating the Safety and Effectiveness of "Aberration-Free" Ophthalmic Refractive Surgery," in 9th Annual FDA Science Forum (Washington, DC, 2003).
  27. B. Drum, "Radial efficiency function in refractive surgery: Ablation losses caused by corneal curvature," in 11th annual FDA Science Forum (Washington, DC, 2005).
  28. Charles Campbell, 2908 Elmwood Court, Berkeley, California 94705, USA (personal communication 2007).
  29. D. A. Chernyak and C. E. Campbell, "System for the design, manufacture, and testing of custom lenses with known amounts of high-order aberrations," J. Opt. Soc. Am. A 20, 2016-2021 (2003). [CrossRef]
  30. R. Srinivasan, B. Braren, D. E. Seeger, and R. W. Dreyfus, "Photochemical cleavage of a polymeric solid - details of the ultraviolet-laser ablation of poly(methyl methacrylate) at 193-nm and 248-nm," Macromol. 19, 916-921 (1986). [CrossRef]
  31. A. Costela, J. M. Figuera, F. Florido, I. Garciamoreno, E. P. Collar, and R. Sastre, "Ablation of Poly(Methyl Methacrylate) and Poly(2-Hydroxyethyl Methacrylate) by 308-nm, 222-nm and 193-nm excimer-laser radiation," Appl. Phys. A 60, 261-270 (1995). [CrossRef]
  32. S. Kuper and M. Stuke, "Femtosecond UV Excimer Laser Ablation," Appl. Phys. B 44, 199-204 (1987). [CrossRef]
  33. G. Pettit and M. Ediger, "Corneal-tissue absorption coefficients for 193- and 213-nm ultraviolet radiation," Appl. Opt. 35, 3386-3391 (1996). [CrossRef] [PubMed]
  34. B. T. Fisher and D. W. Hahn, "Development and numerical solution of a mechanistic model for corneal tissue ablation with the 193 nm argon fluoride excimer laser," J. Opt. Soc. Am. A 24, 265-277 (2007). [CrossRef]
  35. J. R. Jimenez, F. Rodriguez-Marin, R. G. Anera, and L. J. del Barco, "Experiment on PMMA models to predict the impact of corneal refractive surgery on corneal shape: Comment," Opt. Express 15, 7243-7244 (2007). [CrossRef] [PubMed]
  36. C. Dorronsoro and S. Marcos, "Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape: reply," Opt. Express 15, 7245-7246 (2007). [CrossRef] [PubMed]
  37. C. Wochnowski, S. Metev, and G. Sepold, "UV-laser-assisted modification of the optical properties of polymethylmethacrylate," Appl. Surf. Sci. 154, 706-711 (2000). [CrossRef]
  38. W. Pfleging, S. Finke, E. Gaganidze, K. Litfin, L. Steinbock, and R. Heidinger, "Laser-assisted fabrication of monomode polymer waveguides and their optical characterization," Materialwiss. Werkstofftech. 34, 904-911 (2003). [CrossRef]
  39. C. Dorronsoro, B. Alonso, and S. Marcos, "Ablation-Induced Changes in Corneal Shape and Aberrations in a Plastic Cornea Refractive Surgery Model," Invest. Ophthalmol. Visual Sci.  49 E-Abstract 2445 (2008).
  40. B. Braren and D. Seeger, "Low-temperature UV laser etching of PMMA - on the mechanism of ablative photodecomposition (APD)," J. Polym. Sci. Polym. Lett. 24, 371-376 (1986).
  41. R. Srinivasan and B. Braren, "Ablative photodecomposition of polymer-films by pulsed far-ultraviolet (193 nm) laser-radiation - dependence of etch depth on experimental conditions," J. Polym. Sci. Pol. Chem. 22, 2601-2609 (1984). [CrossRef]
  42. G. H. Pettit, M. N. Ediger, and R. P. Weiblinger, "Excimer laser corneal ablation - absence of a significant incubation effect," Lasers Surg. Med. 11, 411-418 (1991). [CrossRef] [PubMed]
  43. D. Huang and M. Arif, "Spot size and quality of scanning laser correction of higher-order wavefront aberrations," J. Cataract Refract. Surg. 28, 407-416 (2002). [CrossRef] [PubMed]
  44. J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, "Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy," Ophthalmology 104, 823-830 (1997). [PubMed]
  45. C. R. Munnerlyn, M. E. Arnoldussen, A. L. Munnerlyn, and B. A. Logan, "Theory concerning the ablation of corneal tissue with large-area, 193-nm excimer laser beams," J. Biomed. Opt. 11, 32-64 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited