OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 2 — Feb. 10, 2009

Ocular aberrations up to the infrared range: from 632.8 to 1070 nm

Enrique J. Fernández and Pablo Artal  »View Author Affiliations

Optics Express, Vol. 16, Issue 26, pp. 21199-21208 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1545 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ocular aberrations were measured by using a Hartmann-Shack wavefront sensor in the visible and infrared portions of the spectrum. In the latter, wavelengths 1030, 1050 and 1070 nm were used for the first time for the study of the optical quality of the eye. In this spectral range the retinal photoreceptors barely respond, so the radiation is virtually invisible for the subject. The results were confronted with those obtained by the same system at 780 and 632.8 nm. Monochromatic aberrations were found to be similar from the visible to the infrared. Longitudinal chromatic aberration was experimentally obtained, being approximately 1 D from 632.8 to 1070 nm. The feasibility of using the infrared for studying the eye was demonstrated. The employment of the infrared has an enormous potential for the better understanding of the impact and influence of the aberrations in vision with adaptive optics. It allows for measuring and controlling aberrations whilst the subject might eventually perform visual tests, with no interference from the beacon light.

© 2008 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Vision, color, and visual optics

Original Manuscript: October 17, 2008
Revised Manuscript: November 28, 2008
Manuscript Accepted: December 2, 2008
Published: December 8, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

Enrique J. Fernández and Pablo Artal, "Ocular aberrations up to the infrared range: from 632.8 to 1070 nm," Opt. Express 16, 21199-21208 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. S. Smirnov, "Measurement of the wave aberration of the human eye," Biophys. J. 7, 766-795 (1962).
  2. F. Berny and S. Slansky, "Wavefront determination resulting from Foucault test as applied to the human eye and visual instruments," in Optical Instruments and Techniques, H. Dickson, 375-386 (Oriel, London, 1970).
  3. H. Howland and B. Howland, "A subjective method for the measurement of monochromatic aberrations of the eye," J. Opt. Soc. Am. 67, 1508-1518 (1977). [CrossRef] [PubMed]
  4. G. Walsh, W. N. Charman, and H. Howland, "Objective technology for the determination of monochromatic aberrations of the human eye," J. Opt. Soc. Am. A 1, 987-992 (1984). [CrossRef] [PubMed]
  5. D. R. Williams, D. H. Brainard, M. J. McMahon, and R. Navarro, "Double-pass and interferometric measures of the optical quality ofthe eye," J. Opt. Soc. Am. A 11, 3123-3135 (1994). [CrossRef]
  6. P. Artal, S. Marcos, R. Navarro, and D. R. Williams, "Odd aberrations and double-pass measurements of retinal image quality," J. Opt. Soc. Am. A 12, 195-201 (1995). [CrossRef]
  7. I. Iglesias, E. Berrio, and P. Artal, "Estimates of the ocular wave aberration from pairs of double-pass retinal images," J. Opt. Soc. Am. A. 15, 2466-2476 (1998). [CrossRef]
  8. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of WA’s of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1957 (1994). [CrossRef]
  9. J. Liang and D. R. Williams, "Aberrations and retinal image quality of the normal human eye," J. Opt. Soc. Am. A 14, 2873-2883 (1997). [CrossRef]
  10. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000). [CrossRef]
  11. D. R. Griffin, R. Hubbard, and G. Wald, "The Sensitivity of the human eye to infra-red radiation," J. Opt. Soc. Am. 37, 546-553 (1947). [CrossRef] [PubMed]
  12. P. L. Walraven and H. J. Leebeek, "Foveal sensitivity of the human eye in the near infrared," J. Opt. Soc. Am. 53, 765-766 (1963). [CrossRef] [PubMed]
  13. D. H. Sliney, R. T. Wangemann, J. K. Franks, and M. L. Wolbarsht, "Visual sensitivity of the eye to infrared laser radiation," J. Opt. Soc. Am. 66, 339-341 (1976). [CrossRef] [PubMed]
  14. American National Standard Institutes "For the safe use of lasers," ANSI Z136.1-2000, Laser Institute of America, (Orlando, Fla., 2000).
  15. F. C. Delori and K. P. Pflibsen, "Spectral reflectance of the human ocular fundus," Appl. Opt. 28, 1061-1077 (1989). [CrossRef] [PubMed]
  16. J. van de Kraats, T. T. J. M. Berendschot, and D. van Norren, "The pathways of light measured in fundus reflectometry," Vision Res. 36, 2229-2247 (1996). [CrossRef]
  17. E. J. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-400. [CrossRef] [PubMed]
  18. D. A. Atchison and G. Smith, "Chromatic dispersions of the ocular media of human eyes," J. Opt. Soc. Am. A 22, 29-37 (2005). [CrossRef]
  19. S. Manzanera, C. Canovas, P. M. Prieto, and P. Artal, "A wavelength tunable wavefront sensor for the human eye," Opt. Express 16, 7748-7755 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-11-7748. [CrossRef] [PubMed]
  20. H. Liou and N. A. Brennan, "Anatomically accurate, finite model eye for optical modeling," J. Opt. Soc. Am. A 14, 1684-1695 (1997). [CrossRef]
  21. R. E. Bedford and G. Wyszecki, "Axial chromatic aberration of the human eye," J. Opt. Soc. Am. 47, 564- 565 (1957). [CrossRef] [PubMed]
  22. W. N. Charman and J. A. Jennings, "Objective measurements of the longitudinal chromatic aberration of the human eye," Vision Res. 16, 999-1005 (1976). [CrossRef] [PubMed]
  23. P. A. Howarth and A. Bradley, "The longitudinal chromatic aberration of the human eye and its correction," Vision Res. 26, 361-366 (1986). [CrossRef] [PubMed]
  24. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, "The chromatic eye: a new reduce-eye model of ocular chromatic aberration in humans," Appl. Opt. 31, 592-599 (1992). [CrossRef]
  25. E. J. Fernández, I. Iglesias, and P. Artal, "Closed-loop adaptive optics in the human eye," Opt. Lett. 26, 746-748 (2001). [CrossRef]
  26. E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refract. Surg. 18, 634-638 (2002).
  27. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye's optical aberrations," J. Vision 4, 281-287 (2004). [CrossRef]
  28. E. J. Fernández and P. Artal, "Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics," J. Opt. Soc. Am. A 22, 1732-1738 (2005). [CrossRef]
  29. P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Vis. Sci. 45, 4601-4610 (2004). [CrossRef] [PubMed]
  30. L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, "Accommodation with higher-order monochromatic aberrations corrected with adaptive optics," J. Opt. Soc. Am. A 23, 1-8 (2006). [CrossRef]
  31. K. M. Hampson, C. Paterson, C. Dainty, and E. A. H. Mallen, "Adaptive optics system for investigation of the effect of the aberration dynamics of the human eye on steady-state accommodation control," J. Opt. Soc. Am. A 23, 1082-1088 (2006). [CrossRef]
  32. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3252. [CrossRef] [PubMed]
  33. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4403. [CrossRef] [PubMed]
  34. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second," Opt. Lett. 32, 2049-2051 (2007). [CrossRef] [PubMed]
  35. S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-8420 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-12-8406. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited