OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 2 — Feb. 10, 2009

Four-dimensional photoacoustic imaging of moving targets

Pinhas Ephrat, Michael Roumeliotis, Frank S. Prato, and Jeffrey J.L. Carson  »View Author Affiliations


Optics Express, Vol. 16, Issue 26, pp. 21570-21581 (2008)
http://dx.doi.org/10.1364/OE.16.021570


View Full Text Article

Enhanced HTML    Acrobat PDF (216 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photoacoustic imaging provides optical contrast with improved tissue penetration and spatial resolution compared to pure optical techniques. Three-dimensional photoacoustic imaging is particularly advantageous for visualizing non-planar light absorbing structures, such as blood vessels, internal organs or tumours. We have developed a fast 3-D photoacoustic imaging system for small animal research based on a sparse array of ultrasonic detectors and iterative image reconstruction. The system can acquire 3-D images with a single laser-shot at a frame rate of 10 Hz. To demonstrate the imaging capabilities we have constructed phantoms made of a scanning point source and a rotating line object and imaged them at a rate of 10 frames per second. The resulting 4-D photoacoustic images depicted well the motion of each target. Comparison of the perceived motion in the images with the known velocity of the target showed good agreement. To our knowledge, this is the first report of single-shot high frame-rate 3-D photoacoustic imaging system. With further developments, this system could bring to bear its inherent speed for applications in small animal research, such as motion tracking of tumour outline during respiration, and rapid monitoring of contrast agent kinetics.

© 2008 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(170.6920) Medical optics and biotechnology : Time-resolved imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: October 17, 2008
Revised Manuscript: November 21, 2008
Manuscript Accepted: November 25, 2008
Published: December 15, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Pinhas Ephrat, Michael Roumeliotis, Frank S. Prato, and Jeffrey J. Carson, "Four-dimensional photoacoustic imaging of moving targets," Opt. Express 16, 21570-21581 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-26-21570


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. V. Wang, "Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography," Disease Markers 19, 123-138 (2003).
  2. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nature Biotech. 24, 848-851 (2006). [CrossRef]
  3. K. H. Song, G. Stoica, and L. V. Wang, "In vivo three-dimensional photoacoustic tomography of a whole mouse head," Opt. Lett. 31, 2453-2455 (2006). [CrossRef] [PubMed]
  4. E. Z. Zhang, J. Laufer, and P. Beard, "Three-dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system," in Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2007), 6437, pp. 64370S-64378.
  5. G. F. Lungu, M.-L. Li, X. Xie, L. V. Wang, and G. Stoica, "In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion," Inter. J. Oncol. 30, 45-54 (2007).
  6. L. Yeqi, X. Da, Y. Sihua, and X. Liangzhong, "Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth," Phys. Med. Biol. 53, 4203-4212 (2008). [CrossRef]
  7. E. Z. Zhang, J. Laufer, R. B. Pedley, and P. Beard, "3D photoacoustic imaging system for in vivo studies of small animal models," in Photons Plus Ultrasound: Imaging and Sensing 2008: The Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2008), 6856, pp. 68560P-68568.
  8. R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, Jr., D. R. Reinecke, and G. A. Kruger, "Breast Cancer in Vivo: Contrast Enhancement with Thermoacoustic CT at 434 MHz-Feasibility Study," Radiology 216, 279-283 (2000). [PubMed]
  9. S. Ermilov, A. Stein, A. Conjusteau, R. Gharieb, R. Lacewell, T. Miller, S. Thompson, P. Otto, B. McCorvey, T. Khamapirad, M. Leonard, and A. Oraevsky, "Detection and noninvasive diagnostics of breast cancer with 2-color laser optoacoustic imaging system," in Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2007), 6437, pp. 643703-643711.
  10. S. Manohar, S. E. Vaartjes, J. G. C. van Hespen, J. M. Klaase, F. M. van den Engh, A. K. H. The, W. Steenbergen, and T. G. van Leeuwen, "Region-of-interest breast images with the Twente Photoacoustic Mammoscope (PAM)," in Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics (SPIE, San Jose, CA, USA, 2007), 6437, pp. 643702-643709.
  11. W. Xueding, X. Xueyi, K. Geng, L. V. Wang, and G. Stoica, "Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography," J. Biomed. Opt. 11, 24015-24011 (2006). [CrossRef]
  12. J. Laufer, E. Zhang, and P. Beard, "Quantitative in-vivo measurements of blood oxygen saturation using multiwavelength photoacoustic imaging," in Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2007), 6437, pp. 64371Z-64379.
  13. H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, "Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy," Appl. Phys. Lett. 90, 53901-53901 (2007). [CrossRef]
  14. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nature Biotech. 21, 803-806 (2003). [CrossRef]
  15. L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, "Photoacoustic imaging of lacZ gene expression in vivo," J. Biomed. Opt. 12, 020504 (2007). [CrossRef] [PubMed]
  16. G. J. Diebold and T. Sun, "Properties of photoacoustic waves in one, two, and three dimensions," Acustica 80, 339-351 (1994).
  17. A. A. Oraevsky and A. A. Karabutov, "Ultimate sensitivity of time-resolved optoacoustic detection," in Biomedical Optoacoustics (SPIE, San Jose, CA, USA, 2000), 3916, pp. 228-239.
  18. P. Liu, "Image reconstruction from photoacoustic pressure signals," in Laser-Tissue Interaction VII(SPIE, San Jose, CA, USA, 1996), 2681, pp. 285-296.
  19. C. G. A. Hoelen and F. F. M. de Mul, "Image Reconstruction for Photoacoustic Scanning of Tissue Structures," Appl. Opt. 39, 5872-5883 (2000). [CrossRef]
  20. K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001). [CrossRef]
  21. G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002). [CrossRef] [PubMed]
  22. X. Minghua, and L. V. Wang, "Universal back-projection algorithm for photoacoustic computed tomography," Phys. Rev. E (Statistical, Nonlinear, and Soft Matter Physics) 71, 16706-16701 (2005). [CrossRef]
  23. C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, and A. Dekker, "Three-dimensional photoacoustic imaging of blood vessels in tissue," Opt. Lett. 23, 648-650 (1998). [CrossRef]
  24. J.-T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy," J. Biomed. Opt. 11, 34032 (2006). [CrossRef] [PubMed]
  25. S. Vaithilingam, I. O. Wygant, P. S. Kuo, X. Zhuang, O. Oralkan, P. D. Olcott, and B. T. Khuri-Yakub, "Capacitive micromachined ultrasonic transducers (CMUTs) for photoacoustic imaging," in Photons Plus Ultrasound: Imaging and Sensing 2006: The Seventh Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2006), 6086, pp. 608603-608611.
  26. J. J. Niederhauser, M. Jaeger, and M. Frenz, "Real-time three-dimensional optoacoustic imaging using an acoustic lens system," Appl. Phys. Lett. 85, 846-848 (2004). [CrossRef]
  27. R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, "Thermoacoustic molecular imaging of small animals," Molec. Imag. 2, 113-123 (2003). [CrossRef]
  28. P. Guo, J. Gamelin, S. Yan, A. Aguirre, and Q. Zhu, "Co-registered 3-D ultrasound and photoacoustic imaging using a 1.75D 1280-channel ultrasound system," in Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2007), 6437, pp. 643713-643711.
  29. G. Paltauf, R. Nuster, P. Burgholzer, and M. Haltmeier, "Three-dimensional photoacoustic tomography using acoustic line detectors," in Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2007), 6437, pp. 64370N-64310.
  30. R. J. Zemp, R. Bitton, M.-L. Li, K. K. Shung, G. Stoica, and L. V. Wang, "Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer," J. Biomed. Opt. 12, 010501 (2007). [CrossRef] [PubMed]
  31. L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, "Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array," J. Biomed. Opt. 13, 054028-054025 (2008). [CrossRef] [PubMed]
  32. R. J. Zemp, L. Song, R. Bitton, K. K. Shung, and L. V. Wang, "Realtime photoacoustic microscopy of murine cardiovascular and respiratory dynamics in vivo," in Photons Plus Ultrasound: Imaging and Sensing 2008: The Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2008), 6856, pp. 68560G-68568.
  33. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, "Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo," IEEE Trans. Med. Imaging,  24, 436-440 (2005). [CrossRef] [PubMed]
  34. J. Dean, V. Gornstein, M. Burcher, and L. Jankovic, "Real-time photoacoustic data acquisition with Philips iU22 ultrasound scanner," in Photons Plus Ultrasound: Imaging and Sensing 2008: The Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics (SPIE, San Jose, CA, USA, 2008), 6856, pp. 685622-685611.
  35. C.-K. Liao, S.-W. Huang, C.-W. Wei, and P.-C. Li, "Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system," J. Biomed. Opt. 12, 064006-064009 (2007). [CrossRef]
  36. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, "The twente photoacoustic mammoscope: system overview and performance," Phys. Med. Biol. 50, 2543-2557 (2005). [CrossRef] [PubMed]
  37. P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, "Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction," J. Biomed. Opt. 13, 054052-054012 (2008). [CrossRef] [PubMed]
  38. P. Ephrat, and J. J. L. Carson, "Measurement of photoacoustic detector sensitivity distribution by robotic source placement," in Photons Plus Ultrasound: Imaging and Sensing 2008: The Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics (SPIE, San Jose, CA, USA, 2008), 6856, pp. 685610-685610.
  39. M. Roumeliotis, P. Ephrat, and J. J. L. Carson, "Development of an omni-directional photoacoustic source for the characterization of a hemispherical sparse detector array," in Photons Plus Ultrasound: Imaging and Sensing 2009: The Tenth Conference on Biomedical Thermoacoustics, Optoacoustics and Acousto-optics (SPIE, San Jose, CA, USA, 2009), 7177, pp. 7177-7188.
  40. B. C. Wilson, M. S. Patterson, and D. M. Burns, "Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light," Lasers Med. Sci. 1, 235-244 (1986). [CrossRef]
  41. R. A. Robb, and D. P. Hanson, "The ANALYZE software system for visualization and analysis in surgery simulation," in Computer integrated surgery, T. R. Lavalle S, Burdea G, Mosges R, ed. (MIT Press, Cambridge, MA, 1995).
  42. Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, "Reconstructions in limited-view thermoacoustic tomography," Med. Phys. 31, 724-733 (2004). [CrossRef] [PubMed]
  43. M. A. Anastasio, and J. Zhang, "Image reconstruction in photoacoustic tomography with truncated cylindrical measurement apertures," in Photons Plus Ultrasound: Imaging and Sensing 2006: The Seventh Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics (SPIE, San Jose, CA, USA, 2006), 6086, pp. 608610-608617.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (198 KB)     
» Media 2: MOV (89 KB)     
» Media 3: MOV (176 KB)     
» Media 4: MOV (88 KB)     
» Media 5: MOV (388 KB)     
» Media 6: MOV (103 KB)     
» Media 7: MOV (202 KB)     
» Media 8: MOV (107 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited