OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 2 — Feb. 10, 2009

Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging

Xianpei Chen, Kristen Lantz Reichenbach, and Chris Xu  »View Author Affiliations


Optics Express, Vol. 16, Issue 26, pp. 21598-21607 (2008)
http://dx.doi.org/10.1364/OE.16.021598


View Full Text Article

Enhanced HTML    Acrobat PDF (1376 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Flexible endoscopes commonly use coherent fiber bundles with high core density to facilitate in vivo imaging. Small, closely spaced cores are desired for achieving a high number of resolvable pixels in a small diameter fiber bundle. On the other hand, closely spaced cores potentially lead to strong core-to-core coupling. Based on numerical simulations, it was previously explained that image fiber bundles can successfully transmit images because of nonuniformities in the core size that reduce coupling. In this paper, we show numerically and experimentally that, due to the randomness of the structural nonuniformity, significant core-to-core coupling still exists in fiber bundles that are routinely used for imaging. The coupling is highly dependent on the illumination wavelength and polarization state. We further show that the resolution achievable by a fiber bundle depends not only on the core density, but also on the inter-core coupling strength. Finally, we propose that increasing the core-cladding index contrast is a promising approach to achieve a fiber bundle with low core coupling, high core density, and effectively single moded propagation in individual cores.

© 2008 Optical Society of America

OCIS Codes
(110.2350) Imaging systems : Fiber optics imaging
(170.2150) Medical optics and biotechnology : Endoscopic imaging

ToC Category:
Imaging Systems

History
Original Manuscript: October 21, 2008
Revised Manuscript: December 3, 2008
Manuscript Accepted: December 4, 2008
Published: December 15, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Xianpei Chen, Kristen L. Reichenbach, and Chris Xu, "Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging," Opt. Express 16, 21598-21607 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-26-21598


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. F. Gmitro and D. Aziz, "Confocal microscopy through a fiber-optic imaging bundle," Opt. Lett. 18, 565 (1993). [CrossRef] [PubMed]
  2. A. F. Gmitro, A. R. Rouse, and A. Kano, "In vivo fluorescence confocal microendoscopy," in Biomedical Imaging, 2002. Proceedings. 2002 IEEE International Symposium on (2002), pp. 277-280. [CrossRef]
  3. Y. S. Sabharwal, A. R. Rouse, L. Donaldson, M. F. Hopkins, and A. F. Gmitro, "Slit-Scanning Confocal Microendoscope for High-Resolution In Vivo Imaging," Appl. Opt. 38, 7133-7144 (1999). [CrossRef]
  4. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, "Endoscope-compatible confocal microscope using a gradient index-lens system," Opt. Commun. 188, 267-273 (2001). [CrossRef]
  5. V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, "Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope," J. Microsc. 207, 108-117 (2002). [CrossRef] [PubMed]
  6. W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, "Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective," Opt. Lett. 29, 2521-2523 (2004). [CrossRef] [PubMed]
  7. K.-B. Sung, R. Richards-Kortum, M. Follen, A. Malpica, C. Liang, and M. R. Descour, "Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervical squamous epithelium in vivo," Opt. Express 11, 3171 (2003). [CrossRef] [PubMed]
  8. B. Flusberg, E. Cocker, W. Piyawattanametha, J. C. Jung, E. Cheung, and M. J. Schnitzer, "Fiber-optic Fluorenscence Imaging," Nature Methods 2, 941 (2005). [CrossRef] [PubMed]
  9. C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, "Remote Fluorescence Imaging of Dynamic Concentration Profiles with Micrometer Resolution Using a Coherent Optical Fiber Bundle," Anal. Chem. 76, 7202-7210 (2004). [CrossRef] [PubMed]
  10. T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, "Fiber-optic-bundle-based optical coherence tomography," Opt. Lett. 30, 1803-1805 (2005). [CrossRef] [PubMed]
  11. K. L. Reichenbach and C. Xu, "Numerical analysis of light propagation in image fibers or coherent fiber bundles," Opt. Express 15, 2151 (2007). [CrossRef] [PubMed]
  12. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. d. Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  13. A. Snyder, and J. Love, Optical Waveguide Theory (Kluwer, London, 1983).
  14. A. W. Snyder, "Coupled-Mode Theory for Optical Fibers," J. Opt. Soc. Am. 62, 1267 (1972). [CrossRef]
  15. S.-L. Chuang, "A coupled-mode theory for multiwaveguide systems satisfying the reciprocity theorem and power conservation," J. Lightwave Technol. 5, 174-183 (1987). [CrossRef]
  16. J. Fini, "Perturbative numerical modeling of microstructure fibers," Opt. Express 12, 4535-4545 (2004). [CrossRef] [PubMed]
  17. K. Saitoh, Y. Sato, and M. Koshiba, "Coupling characteristics of dual-core photonic crystal fiber couplers," Opt. Express 11, 3188-3195 (2003). [CrossRef] [PubMed]
  18. E. Marcatili, "Improved coupled-mode equations for dielectric guides," IEEE J. Quantum Electron. 22, 988-993 (1986). [CrossRef]
  19. K. L. Reichenbach, and C. Xu, "Independent core propagation in two-core photonic crystal fibers resulting from structural nonuniformities," Opt. Express 13, 10336 (2005). [CrossRef] [PubMed]
  20. X. Feng, T. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, "Solid microstructured optical fiber," Opt. Express 11, 2225-2230 (2003). [CrossRef] [PubMed]
  21. E. Beaurepaire, M. Oheim, and J. Mertz, "Ultra-deep twophoton fluorescence excitation in turbid media," Opt. Commun. 188,25-29 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited