OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 2 — Feb. 10, 2009

Digital reconstruction based on angular spectrum diffraction with the ridge of wavelet transform in holographic phase-contrast microscopy

Jiawen Weng, Jingang Zhong, and Cuiying Hu  »View Author Affiliations


Optics Express, Vol. 16, Issue 26, pp. 21971-21981 (2008)
http://dx.doi.org/10.1364/OE.16.021971


View Full Text Article

Enhanced HTML    Acrobat PDF (3414 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A numerical reconstruction technique of digital holography based on angular spectrum diffraction by means of the ridge of Gabor wavelet transform (GWT) is presented. Appling the GWT, the object wave can be reconstructed by calculating the wavelet coefficients of the hologram at the ridge of the GWT automatically even if the spectrum of the virtual image is disturbed by the other spectrum. It provides a way to eliminate the effect of the zero-order and the twin-image terms without the spatial filtering. In particular, based on the angular spectrum theory, GWT is applied to the digital holographic phase-contrast microscopy on biological specimens. The theory, the results of a simulation and an experiment of an onion specimen are shown.

© 2008 Optical Society of America

OCIS Codes
(100.7410) Image processing : Wavelets
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(180.3170) Microscopy : Interference microscopy
(090.1995) Holography : Digital holography

ToC Category:
Image Processing

History
Original Manuscript: October 17, 2008
Revised Manuscript: November 30, 2008
Manuscript Accepted: December 12, 2008
Published: December 18, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Jiawen Weng, Jingang Zhong, and Cuiying Hu, "Digital reconstruction based on angular spectrum diffraction with the ridge of wavelet transform in holographic phase-contrast microscopy," Opt. Express 16, 21971-21981 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-26-21971


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, "Parameter-optimized digital holographic microscope for highresolution living-cell analysis," Appl. Opt. 43, 6536-6544 (2004). [CrossRef]
  2. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, "Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy," Opt. Lett. 30, 468-470 (2005). [CrossRef] [PubMed]
  3. C. J. Mann, L. Yu, C. Lo, and M. K. Kim, "High-resolution quantitative phase-contrast microscopy by digital holography," Opt. Express 13, 8693-8698 (2005). [CrossRef] [PubMed]
  4. B. Kemper and G. von Bally, "Digital holographic microscopy for live cell applications and technical inspection," Appl. Opt. 47, A52-A61 (2008). [CrossRef] [PubMed]
  5. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, "Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging," Appl. Opt. 47, 176-182 (2008). [CrossRef]
  6. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  7. L. Yu and M. K. Kim, "Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method," Opt. Lett. 30, 2092-2094 (2005). [CrossRef] [PubMed]
  8. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997). [CrossRef] [PubMed]
  9. T. Colomb, J. Kühn, F. Charrière, and C. Depeursinge, "Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram," Opt. Express 14, 4300-4306 (2006). [CrossRef] [PubMed]
  10. M. Liebling, T. Blu, and M. Unser, "Fresnelets: new multiresolution wavelet bases for digital holography," IEEE Trans. Image Proc. 11, 1-14 (2002).
  11. J. Zhong and J. Weng, "Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilomatry," Appl. Opt. 43, 4993-4998 (2004). [CrossRef] [PubMed]
  12. J. Zhong and J. Weng, "Phase retrieval of optical fringe pattern form the ridge of a wavelet transform," Opt. Lett. 30, 2560-2562 (2005). [CrossRef] [PubMed]
  13. H. Jeong, "Analysis of plate wave propagation in anisotropic laminates using a wavelet transform," NDT & E Int. 34, 185-190(2001). [CrossRef]
  14. A. Cesar and K. Taeeeui, "Determination of strains from fringe patterns using space-frequency representations," Opt. Eng. 42, 3182-3193 (2003). [CrossRef]
  15. F. Montfort, F. Charrière, and T. Colomb, "Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position," J. Opt. Soc. Am. A 23, 2944-2953 (2006). [CrossRef]
  16. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, "Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation," Appl. Opt. 45, 851-863 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited